چکیده
افزایش بهبود فضای ویژگی ورودی موجب تماشای بسیار کلاس‌های پوششی در طبقه‌بندی تصاوير سنجش‌آزمود می‌شود اما تعداد کمی نمونه‌های آموزشی مناسب با وجود اعمال کردن متغ‌متی سود‌می‌آورد. استفاده از روش‌های جریجی به‌جای طبقه‌بندی کننده‌ی متغ‌متی برای "SVRMs" یا کلاس‌های پوششی بردار پشتیبانی (SVMs) جمعی گردن روش پیشنهادی می‌شود. روش پیشنهادی نسبت به روش‌های قبلی در جمعی کردن SVM مراحل موتوری دارد. اعمال همزمان روش پیشنهادی کننده‌ی متغ‌متی و فضای ویژگی و روش پیشنهادی پیش‌بینی کننده‌ی متغ‌متی به‌طور هم‌زمان اعمال می‌شود. ادامه طبقه‌بندی کننده‌ی متغ‌متی در سطح احتمال و به‌صورت غیرخطی با استفاده از یک تلفیق SVM طبقه‌بندی طراحی و تحلیل شده است. در داده‌های فضایی روش پیشنهادی حدود 10 درصد نسبت به روش پیشنهادی به دو منبع داده عملکرد بهتری روان‌کردن کلاس‌های مورد بررسی خصوصا، کلاس‌های ترکیق نسبت سایر روش‌های جمعی نشان می‌دهد. تاریخ نشان روش پیشنهادی بخش حفظ هزینه مالی مطلبی عملکرد بهتری نسبت به روش‌های پیشنهادی به دو منبع داده (بهترین نمایشگر و پیشرفت) و همچنین روش‌های قد درصد (جدول تصادفی و نشانه عصبی) تصمیم می‌شود.

کلیدواژه‌ها: ماشین برد پشتیبانی، روش‌های دست‌جمعی، فضای ویژگی، خود راننده، تصاوردی، تلفیق

محسن معاونی* مهدی اخوندزاده

1. دانشجوی دکتری، آزمایشگاه‌های فناوری اطلاعات و امکانات، دانشکده مهندسی تکنولوژی، دانشگاه تهران
2. استاد، آزمایشگاه‌های فناوری اطلاعات و امکانات، دانشکده مهندسی تکنولوژی، دانشگاه تهران

ناریز دریافت مقاله: 1390/10/21
تاریخ پذیرش مقاله: 1391/02/14

Email: jafarim@ut.ac.ir

[DOI: 10.29252/jigl.15.1.133]
با پیش‌پردازش فن‌های مختلف استخراج اطلاعات و به‌کارگیری آن‌ها، انسجام ویژگی‌های فضاهای ویژگی‌ها به‌طور همزمان است. این کار از دیدگاه انسجام ویژگی‌های فضای ویژگی‌ها به‌صورت تصادفی جایگزینی کننده‌ای که در برخی از آن‌ها تعادل می‌نشاند برای بیش از ۲۰۰۰ میلی‌متر وارد اشتراک‌کرده‌اند. با توجه به این تعداد، شیب و دامنه از میانه‌ای به این مدلها، انسجام ویژگی‌های فضایی و منابع دیگر در مورد این استراتژی به‌صورت مشابه، کاربردهای متفاوتی می‌تواند به بیش از ۱۰۰ برد بررسی معمولی در طبقه‌بندی فضایی بادجبه خُرَق و میزان فضایی است. به‌طور کلی، این نتایج نشان می‌دهد که در برخی از این مدلها، فضایی است که انسجام ویژگی‌های فضایی و منابع دیگر در مورد این استراتژی به‌صورت مشابه، کاربردهای متفاوتی می‌تواند به بیش از ۱۰۰ برد بررسی معمولی در طبقه‌بندی فضایی بادجبه خُرَق و میزان فضایی است. به‌طور کلی، این نتایج نشان می‌دهد که در برخی از این مدلها، فضایی است که انسجام ویژگی‌های فضایی و منابع دیگر در مورد این استراتژی به‌صورت مشابه، کاربردهای متفاوتی می‌تواند به بیش از ۱۰۰ برد بررسی معمولی در طبقه‌بندی فضایی بادجبه خُرَق و میزان فضایی است.

پایان‌نامه ۱۳۹۴ - ۰۱ - ۱۰ مقدمه

1 Polarmetric Synthetic Aperture Radar
2 Hough

1۳۶
طرح ترکیب طبقه‌بندی کننده‌ها اولین بار توسط هانسن و سالامون در سال ۱۹۹۰ ارائه گردید. آن‌ها ثابت کردند در صورتی که هریک از طبقه‌بندی کننده‌های اولیه مستقل باشند و ترتیب خطای آن‌ها کمتر از ۸۵٪ باشد در این صورت ترکیب طبقه‌بندی کننده‌های دیگری در دقت بالاتری نسبت به هریک از طبقه‌بندی کننده‌ها به‌صورت منفرد خواهد بود. ایکالاکی در سال ۱۹۹۵ این نظر را تأیید کردند.

این روش برای اولین بار در سال ۱۹۹۰ معرفی گردید و پس از آن در سال ۱۹۹۵ این ترکیب ایجاد گردید. در سال ۲۰۰۰ دیشپرچ در مقاله‌ای مطرح کرد که در صورتی که دو یا سه ترکیب طبقه‌بندی کننده‌ها به روش‌های مختلفی مورد ارزیابی قرار گیرند، بتواند با ارزیابی دقیق‌تری به نتایج برسد.

در این مقاله، از مدل‌ها برای پیش‌بینی آزمون‌های مختلف به کار رفته و نتایج به‌عنوان نتایج به‌کارگیری گزینه‌های مختلف برای ترکیب طبقه‌بندی کننده‌ها ارائه شده است.

1. Ensemble Method
2. Modification
طبقه‌بندی SVM با هر دسته داده آموزشی انجام و سپس نتایج حاصل از آن‌ها در فرآیندی تجربه می‌شود.

روش ارائه‌شده از این مقاله تأکید بر استفاده از طبقه‌بندی کننده SVM با استفاده از داده‌های آموزشی بدون استفاده از تکنیک‌هایی مانند Bagging و Boosting است. SVM نیاز به معادله طبقه‌بندی دارد که در اینجا مسئله تغییر نمی‌کند. SVM در مدار مدیان است که روش جمعیتی که در فضای داده‌های آموزشی و یک تکنیک استفاده می‌شود.

در مقاله ۱۲۱ سی‌سی‌لپ با استفاده از SVM در مسیر تغییر کره‌ای توسط داده‌های آموزشی بدون استفاده از تکنیک‌هایی مانند Bagging و Boosting است. SVM نیاز به معادله طبقه‌بندی دارد که در اینجا مسئله تغییر نمی‌کند. SVM در مدار مدیان است که در فضای داده‌های آموزشی و یک تکنیک استفاده می‌شود.

۱ Marigin
۲ Vapnik
۳ Boosting
۴ Kim
۵ Bagging
روش‌های دستی‌جمعی در طبقه‌بندی

2-روش‌های دستی‌جمعی

روش‌های دستی‌جمعی، چند یادگردنده با طبقه‌بندی کننده را آموزش می‌دهد تا یک مسئله را حل کند. برای یک روش یادگیری پایداری معمولاً به تلاش برای ساخت یک یادگردنده از داده‌های آموزشی دارد. روش‌های دستی‌جمعی مجموعه‌ای از یادگردنده‌ها را باهم آموزش داده و ادغام می‌کند. این روش‌ها از SVM (Support Vector Machine) و یا یادگردنده‌های تطبیقی جمع (Aggregating) استفاده می‌کنند.

جهان هسته‌ای بابت لازم است که ساخت تمام روش‌های دستی‌جمعی کننده، یک یادگردنده ضعیف به‌شکل کاملاً مشابه با یک یادگردنده ضعیف دارد. این آزمون‌های خصوصی این ساخت این اثر را برای آموزش یک طبقه‌بندی کننده به‌دست می‌آورد [33].

۱-آگرگه‌بندی

۲-استاندارد

در نهایت در بخش دنباله‌گیری از این تحقیق ارائه خواهد شد.
در یک طرح دارد، روش پیشنهادی از سه مرحله تشکیل شده است (شکل ۲). تشکیل طبقه‌بندی کننده‌های پایه با مجموعه نمونه‌های آموزشی و فضای ویژگی تصادفی، اطلاعات ویژگی این کننده‌ها به صورت متولی و در نهایت ادغام نتایج طبقه‌بندی کننده‌ها به صورت عکس خطی و SVM در سطح احتمال و به روش SVM، همان‌طور که در نیاز اصلی روش پیشنهادی این مقاله افزاری کارایی است طبقه‌بندی کننده‌ها از طریق دست‌بامی کردند این است. روش گروهی ساری ارائه‌شده در این تحقیق از سه روش ذکرشده در بخش ۲ الگوم گرفته است و مزایای هرکدام از روش‌ها را

عنوان: الگوریتم برش‌دهنده

شکل ۲: الگوریتم برش‌دهنده

۴ - روش پیشنهادی

Algorithm, Bootstrap

INPUT: F, U, K = size of bootstrap samples, R = size of bootstrap features,
T = number of bootstraps
OUTPUTS: U, F,
for t = 1 to T do
Draw a bootstrap sample U_t of size K in U.
Draw a bootstrap feature F_t of size R in F.
end for

شکل ۳: الگوریتم خودارانداز پیشنهادی
با معلوم بودن m نمونه‌ی آموزشی احتمال اینکه نمونه‌ی آموزشی n, m و n دفعه انتخاب شده باشد.

دراي توزيع پواسون با ($\lambda = 1$) است لذا احتمال اين كه نمونه ميم مكين متين حداقل برير i, j, k مثل "id" وجود داشته باشد كه برای هر نمونه IG مقیاس می‌شود. فردی را در این صورت این ویژگی را به عنوان په‌ترین ویژگی برای تعیین این می‌کنيد در حالی که این ویژگی نمی‌تواند تعیین داده شود و برای بیشترین مناسب‌ترین برای رفع این نقص می‌توان از نسبت محتمل گره (۱) به‌دست می‌آید استفاده کرده.

$$P(D_1, D_2, ..., D_k) = \frac{G(D_1, D_2, ..., D_k)}{G(D)}$$

کام مهم دریگر در روش پیشنهادی استفاده از روش SVM تقویت در آموزش طبقه‌بندی کننده است. SVM به مجموعه داده‌های آموزشی (x) تابع پیش‌بینی طبقه‌بندی کننده یا به‌صورت

$$D = \sum_{i=1}^{n} \left| \frac{D_i}{|D|} \log \frac{|D_i|}{|D|} \right| - 1$$

برای x در نظر گرفتن تابع همان K عبارت است از (رابطه ۱)

$$\text{sign}(f(x)) = \sum_i^{n} y_i \alpha_i K(x, x_i) + b$$

در این رابطه b پایان است و ضرایب بهینه با بیشینه کردن معادله لاگرانژ مطلق رابطه (۵) حاصل می‌شود [۱۳۶].

Gain ratio

با معلوم بودن مجموعه D, D_1, D_2، و D_k اگر مجموعه آموزشی D به زیرمجموعه‌های D_1 و D_2 تقسیم گردید، می‌مکن است انرژی کاهش یابد و مقدار کاهش همان (IG) است، یعنی:

$$G(D; D_1, ..., D_k) = \text{Ent}(D) - \sum_{i=1}^{k} \left(\frac{|D_i|}{|D|} \text{Ent}(D_i) \right)$$

بنابراین جفت مقادیر ویژگی که باعث IG بزرگ‌تری بشود به عنوان می‌پردازند انتخاب می‌شود.

Information Gain

[۱] Information Gain

[۲] Gain ratio
طرح ادغام در روش پیشنهادی در سطح احتمال حاصل از طبقه‌بندی کننده‌های پایه و با روش SVM در کاربردی که خود را مانند از مرحله اول (گیگینگ) و Q طبقه‌بندی کننده در مرحله دوم از هریک از خود را اندازه‌گیری می‌کند. شکل‌آمده کننده SVM- با به‌عنوان فضای بزرگی ورودی fusion محصول می‌شود. در تمام طبقه‌بندی پایه (SVM) در این مقاله از کرلنگوسین ۱ در SVM به دلیل توانایی شده در کنترل داده‌ها ابزار اکسترالسیون است.

\[
l_p = \frac{[0]}{2} + C + \sum_{i=1}^{n_+} \xi_i + \sum_{i=1}^{n_-} \xi_i - \sum_{i=1}^{n_+} \alpha_i [y_i (\omega \cdot x_i + b) - 1 + \xi_i] - \sum_{i=1}^{n_-} \alpha_i [y_i (\omega \cdot x_i + b) - 1 - \xi_i]
\]

رابطه (5)

در رابطه (5) ناساواتی‌ها مطابق رابطه (6 و 7) برقرار است [36].

\[
c_+ \geq \alpha_i \geq 0, c_- \geq \alpha_i \geq 0, \frac{c_+}{c_-} = \frac{n_+}{n_-} \text{ and } \mu_i \geq 0
\]

رابطه (6)

\[
\xi_i = \frac{||\beta||}{\beta}
\]

رابطه (7)

در رابطه (7) میزان خطای هر نمونه آموزشی در اطراف حاشیه را نشان می‌دهد. مقدار این پارامتر به کمک رابطه (8) قابل پردازش است [36].

\[
\xi_i = \max(0, 1 - y_i (\sum_{i=1}^{n_+} y_i \alpha_i K(x_i, x_j) + b))
\]

(8)

همچنین در این آموزشی SVM گام زده در آموزشی SVM اشکال صورت گیرد. روند اصلاح حاشیه در روش پیشنهادی در شکل (4) نشان داده شده است.

مزیت این روش این است که در هر بار تکرار مجموعه اصلاح‌شده از داده‌های آموزشی تولید می‌شود. خروجی هر بار تکرار طبقه‌بندی کننده‌های دنبال می‌تواند در یک فرآیند ادغام بر جسب نهایی نمونه‌ها را تعمیم کند [36].

\[
\text{endez}
\]

4- مجموعه داده مورد استفاده

به‌منظور ارائه رویکرد پیشنهادی و مجموعه داده با ابعاد فضای ویژگی بالا انتخاب شد. داده‌های داده‌های فضای‌برداری با ۱۸۵ باند طیف و داده فضای‌برداری بالایمکین راداری که با استخراج ویژگی‌های مختلف به فضای با ابعاد ۹۴ می‌رسد. به‌این‌ترتیب ابعاد بالایی فضای ویژگی به همراه پیچیده‌گی‌های داده‌ها و نمونه‌های آموزشی کنترل شده می‌تواند جایگاه مختلف روی پیشنهادی را بررسی کند.

1 Gaussian
4-1- مجموعه داده فراطبی

منطقه جنگلی کشاورزی در شمال غرب ایالت ایالتی در کشور آمریکا به‌عنوان داده‌ای جهت استخراجی آزمایش‌های انجام‌شده است [37 و 38]. بنابراین در نظر گرفتن پس‌زمینه ۱۶ کلاس در منطقه موجود است که نقشه‌ی پوششی آن در شکل (۵-الف) نشان داده‌شده است. این نقشه کاربردی در سال ۱۹۹۲ و با کار زمینی تهیه‌شده است. جدیدیت ۳۳/۲، پوشش بیشتر چنگال و دارای داده‌ای کشاورزی در آزمایش‌ها ۲۳ درصد این تصویر پوششی حدود ۲۵ درصد آن پوششی کشاورزی است. در آزمایش‌ها ۲۰ درصد این نقشه پوششی به‌عنوان داده اشکلی و مابقی به‌عنوان داده آزمایش با استفاده‌شده است. در کلاس‌ها و شماره‌ی اختصاص داده‌شده به آن‌ها و تعداد داده‌های اموزشی در هر کلاس در جدول (۱) آمده است. معتبر بودن داده‌های حقیقی و داده ابرطبیعی موجود از منطقه از لحاظ میزان استفاده از این منطقه برای انجام آزمایش‌ها است.

تصویر ابرطبیعی از این منطقه توسعه‌سنجیده و اجرای پروژه در ماه مهر سال ۱۹۸۲، به‌صورت هواپیمایی در ارتفاع ۴۰‌کیلومتر تصویربرداری شده است. تصویر اخترشده در ابعاد ۱۴۵۰×۱۴۵۰ کیکسل بوده و دارای فرمت تکیک مکانی ۲۰ متر و قدرت تفکیک رادیومتریکی ۱۰ بین است. این داده در ۲۲۰ دان طبقی با قدرت تفکیک طبقی ۱۰ نانومتر و در محدوده طبقی ۲/۵-۳/۵ نانومتر تهیه شده است. داده‌های ۲۰۱-۱۰-۱۴۲-۱۰۰۰-۱۵۳ و ۲۲ جزو پدیده‌های جذبی هستند همچنین داده‌های ۱۴۵-۱۴۶-۱۴۷-۱۴۶-۱۴۸ و ۱۴۹ و ۲۱۹-۲۱۸-۲۱۸ در [۳۹] توصیف‌کننده منطقه ساخته‌اند. این داده مورد استفاده در مجموع شامل ۲۳ باند جذبی آب و ۲۳ باند نوری می‌باشد که از تصویر اسکای‌دف حذف شده‌اند و طبقه‌بندی ۱۸۵ باند باقی مانده صورت گرفته است. شکل (۵-ب) نمایی از تصویر موردنظر را

۱ Indiana
۲ AVIRIS
جدول 1: تعداد داده‌های آموزشی کلاس‌های مورد بررسی در داده فراطیفی

<table>
<thead>
<tr>
<th>شماره کلاس</th>
<th>نام کلاس</th>
<th>شماره آموزشی</th>
<th># نام کلاس</th>
<th># آموزشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>پیونجه</td>
<td>۹</td>
<td>جو دوسر</td>
<td>۲۰</td>
</tr>
<tr>
<td>۲</td>
<td>ذرت ۱</td>
<td>۱۴۲۳</td>
<td>سویا ۱</td>
<td>۹۶۸</td>
</tr>
<tr>
<td>۳</td>
<td>ذرت ۲</td>
<td>۸۴۲</td>
<td>سویا ۲</td>
<td>۲۴۶۸</td>
</tr>
<tr>
<td>۴</td>
<td>ذرت ۳</td>
<td>۲۲۴</td>
<td>سویا ۳</td>
<td>۶۱۴</td>
</tr>
<tr>
<td>۵</td>
<td>جمن/ارمع</td>
<td>۴۹۷</td>
<td>گنگم</td>
<td>۲۱۲</td>
</tr>
<tr>
<td>۶</td>
<td>جمن/ادرخت</td>
<td>۷۴۷</td>
<td>چنگل</td>
<td>۱۳۹۹</td>
</tr>
<tr>
<td>۷</td>
<td>چنگم/ارمع-در</td>
<td>۲۶</td>
<td>ساختمان سیر</td>
<td>۳۸۰</td>
</tr>
<tr>
<td>۸</td>
<td>پیونجه خشک</td>
<td>۴۸۹</td>
<td>برج سکی و فولادی</td>
<td>۹۵</td>
</tr>
</tbody>
</table>

در مورد روش‌های تجزیه ناهدیده ابتدا کاهش نوزی اسکل انجام شد و سپس ویژگی‌ها استخراج شدند ولی در سور و پیش‌گامی‌های تجزیه هم‌دوس جهت حفظ اطلاعات فاز کاهش نوز دیده از استخراج ویژگی‌ها انجام شد. در مجموع فضای ویژگی اچ‌فیما، با ابعاد ۹۴ در ۷۲ متر ویژگی پیش‌گامی استخراج گام (۶-الف) و تصوری مختصات گوگل اثر۷ آن در شکل (۶-ب) نشان داده شده است.

جدول 2: داده‌های آموزشی و آزمایشی مجموعه داده اول

<table>
<thead>
<tr>
<th>نام کلاس</th>
<th>ماهیت</th>
<th># آزمایشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ro</td>
<td>گیاه</td>
<td>۱۱۷</td>
</tr>
<tr>
<td>Bu</td>
<td>ساختمان</td>
<td>۳۶۹</td>
</tr>
<tr>
<td>Tr</td>
<td>درخت</td>
<td>۴۴۲</td>
</tr>
<tr>
<td>Wa</td>
<td>آب</td>
<td>۵۰۳</td>
</tr>
<tr>
<td>GV</td>
<td>پیونجه گیاهی</td>
<td>۵۳۷</td>
</tr>
<tr>
<td>مجموع</td>
<td>۱۵۲</td>
<td>۲۱۶۲</td>
</tr>
</tbody>
</table>

مکان‌ها بیشترین داده‌های تمام پلاژ‌های سنندج بودند، مثال، ساحل شهر کاهش نوزی اسکل، در جهت برد و نزدیک تا ۱۰ متر در برد دور است. کلاس‌های موردنظر و تعداد داده‌های آموزشی و آزمایشی مناسب با هر کدام در جدول (۷) نشان داده شده است.

4-2 مجموعه داده پلاریمتریک
تصویر پلاریمتریک از منطقه‌های شهری سانفرانسسکو

میزان داده دوم برای ارزیابی تکثیر روی نشانه‌های در فضایی متمایز از تصاویر فراطیفی است. این تصویر مرتب به تاریخ ۲۰۱۴-۰۸-۲۰ از سنجش رادار سی-۲ در اسکل با طول موج ۶۵۵ سانتی‌متر، در مدت ۲۰ دقیقه ۳۹ ثانیه فرمت SLC قتم ۷ در ۹۴ در ۷۲ متر ویژگی اچ‌فیما، با ابعاد ۹۴ در ۷۲ متر ویژگی پیش‌گامی استخراج گام (۶-الف) و تصوری مختصات گوگل اثر۷ آن در شکل (۶-ب) نشان داده شده است.

مکان‌ها بیشترین داده‌های تمام پلاژ‌های سنندج بودند، مثال، ساحل شهر کاهش نوزی اسکل، در جهت برد و نزدیک تا ۱۰ متر در برد دور است. کلاس‌های موردنظر و تعداد داده‌های آموزشی و آزمایشی مناسب با هر کدام در جدول (۷) نشان داده شده است.

1 San Francisco
2 Radarsat-2
3 Fine quad
4 Single Look Complex
5 Range
6 Box-car
جدول ۳: پیامدهای پلاریزاسیون مورد استفاده

<table>
<thead>
<tr>
<th>توصیف و نماد</th>
<th>تعداد</th>
</tr>
</thead>
<tbody>
<tr>
<td>ویژگی های اصلی</td>
<td>۳</td>
</tr>
<tr>
<td></td>
<td>ماتریس پراکنش۱</td>
</tr>
<tr>
<td></td>
<td>ماتریس همودوzi۲</td>
</tr>
<tr>
<td></td>
<td>ماتریس کواربانز۳</td>
</tr>
<tr>
<td>ویژگی های تجزیه</td>
<td>۹</td>
</tr>
<tr>
<td></td>
<td>هوین۴</td>
</tr>
<tr>
<td></td>
<td>بارنز۵</td>
</tr>
<tr>
<td></td>
<td>کلود۶</td>
</tr>
<tr>
<td></td>
<td>هلم۷</td>
</tr>
<tr>
<td>ویژگی های تجزیه</td>
<td>۹</td>
</tr>
<tr>
<td></td>
<td>ون زیل۸</td>
</tr>
<tr>
<td></td>
<td>فریمن-موتارن۹</td>
</tr>
<tr>
<td></td>
<td>باماکوچی۱۰</td>
</tr>
<tr>
<td></td>
<td>نژوی۱۱</td>
</tr>
<tr>
<td></td>
<td>کلود-پاتر۱۲</td>
</tr>
<tr>
<td>تفکیک کننده‌های SAR</td>
<td>۱۹</td>
</tr>
<tr>
<td></td>
<td>توان۱۳</td>
</tr>
<tr>
<td>تمام ویژگی‌ها</td>
<td>۹۴</td>
</tr>
</tbody>
</table>

۱ Scattering Matrix
۲ Coherency matrix elements
۳ Covariance matrix elements
۴ Krogager
۵ Huynen
۶ Barnes
۷ Cloude
۸ Holm
۹ Holm
۱۰ Freeman-Durden
۱۱ Yamaguchi
۱۲ Touzi
۱۳ Cloude-Pottier
۱۴ SPAN
۱۵ Fractional Polarization
۱۶ Correlation Coefficients
پیاده‌سازی و تحلیل نتایج

5- نتایج روش پیش‌نهادی در برای سایر SVM روش‌های دسته‌جمعی

در آزمایش‌های مربوط به پیش‌نهادی در برای سایر SVM روش‌های دسته‌جمعی، کاهش غیرکاربردی در ارائه نتایج مشاهده شد. از این رو، در حال حاضری از هر یک از SVM روش‌های پیش‌نهادی در نمایش دقیق‌تر و بهبود چشم‌انداز دسته‌بندی و همچنین طبقه‌بندی کنندگی متغیر روی داده‌های پیش‌نهادی و پیش‌نهادی پایه که به نام SVM از نظر ابزاری و پیش‌نهادی پایه نشان داده‌ شد است. بنابراین نتایج 4 روش طبقه‌بندی موردنظر در جدول (آمده است.

جدول (۵) و جدول (۶) نتایج ارزیابی دقیق روش‌های پیش‌نهادی در نمایش دقیق روش‌های پیش‌نهادی از SVM است. همچنین در هر دو داده‌های پیش‌نهادی، آماری دقیق روش پیش‌نهادی از سایر روش‌های جمعیت بالاتر است.

1 User Accuracy
2 Overall Accuracy
در تصور فراطبی دقیق کلی روش پیشنهادی در مقایسه با طبقه‌بندی منفرد ۱۶ درصد افزایش نشان می‌دهد. این افزایش نشان می‌دهد روش پیشنهادی در حل مشکل فضای بزرگ و یکپارچه موفق بوده و پیچیدگی که در فضای ویژگی عملکرد نسبت به سایر روش‌های گروهی بهرامی است. هماهنگی در مواردی که عملکرد پیشنهادی و سایر روش‌ها تفاوت به‌طور کلی در مقایسه با ۲، ۳، ۴، ۷، ۱۰ و ۱۲ درصد بوده‌است. همچنین نتایج نشان می‌دهد که روش پیشنهادی بهترین عملکرد را در کلاس‌های دیگر دارد. گذراندند که در روش‌های گروهی سایر روش‌ها تفاوت به‌طور کلی در مقایسه با ۲، ۳، ۴، ۷، ۱۰ و ۱۲ درصد بوده‌است. همچنین نتایج نشان می‌دهد که روش پیشنهادی بهترین عملکرد را در کلاس‌های دیگر دارد.

download from jgit.kntu.ac.ir at 12:25 +0430 on Tuesday July 6th 2021
[DOI: 10.29252/jgit.5.1.133]
جدول ۵: دفت کلاسی (UA) و دفت کلی (OA) طبقه بنیا داده فراطیفی

<table>
<thead>
<tr>
<th>جدایی</th>
<th>SVM</th>
<th>BTSVMs</th>
<th>BFSVMs</th>
<th>BSSVMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/5</td>
<td>9/2</td>
<td>9/3</td>
<td>9/5</td>
</tr>
<tr>
<td>2</td>
<td>8/7</td>
<td>8/7</td>
<td>8/6</td>
<td>8/5</td>
</tr>
<tr>
<td>3</td>
<td>8/8</td>
<td>8/5</td>
<td>8/7</td>
<td>8/6</td>
</tr>
<tr>
<td>4</td>
<td>7/8</td>
<td>7/8</td>
<td>7/7</td>
<td>7/6</td>
</tr>
<tr>
<td>5</td>
<td>6/8</td>
<td>6/7</td>
<td>6/7</td>
<td>6/6</td>
</tr>
<tr>
<td>6</td>
<td>5/8</td>
<td>5/8</td>
<td>5/7</td>
<td>5/6</td>
</tr>
<tr>
<td>7</td>
<td>4/8</td>
<td>4/7</td>
<td>4/7</td>
<td>4/6</td>
</tr>
<tr>
<td>8</td>
<td>3/8</td>
<td>3/7</td>
<td>3/7</td>
<td>3/6</td>
</tr>
<tr>
<td>9</td>
<td>2/8</td>
<td>2/7</td>
<td>2/7</td>
<td>2/6</td>
</tr>
<tr>
<td>10</td>
<td>1/8</td>
<td>1/7</td>
<td>1/7</td>
<td>1/6</td>
</tr>
</tbody>
</table>

شکل ۷: خروجی طبقه بنیا داده فراطیفی: الف) طبقه بنی داده ب) روش پیشنهادی (SVRMs) در داده پلاریمتریک (مجموعه دوم) عملکردی مشابه فراطیفی دیده می‌شود. فضای ویژگی در این داده هم‌مانع از عملکرد مطلوب طبقه بنی دیده می‌شود. روش پیشنهادی در دقت کلی حدود ۱۰ درصد نسبت به طبقه بنی منفرد افزایش نشان می‌دهد. بهبود عملکرد ۲ و ۳ درصدی نسبت به سایر روش‌های جمعی در SVM هم در نتایج روش پیشنهادی بهبود قابل توجهی داشته است.

جدول ۶: دفت کلاسی (UA) و دفت کلی (OA) طبقه بنیا داده پلاریمتریک

<table>
<thead>
<tr>
<th>روش</th>
<th>کمیت</th>
<th>ساختن</th>
<th>درخت</th>
<th>آب</th>
<th>بوش گیاهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>OA</td>
<td>98/78</td>
<td>72/33</td>
<td>47/4</td>
<td>61/6-7</td>
</tr>
<tr>
<td>BTSVMs</td>
<td>OA</td>
<td>87/39</td>
<td>72/21</td>
<td>38/6</td>
<td>81/8-9</td>
</tr>
<tr>
<td>BFSVMs</td>
<td>OA</td>
<td>89/39</td>
<td>72/21</td>
<td>38/6</td>
<td>81/8-9</td>
</tr>
<tr>
<td>BSSVMs</td>
<td>OA</td>
<td>91/3</td>
<td>81/9</td>
<td>78/6</td>
<td>91/5-6</td>
</tr>
<tr>
<td>SVM</td>
<td>OA</td>
<td>94/93</td>
<td>82/93</td>
<td>85/5</td>
<td>91/5-6</td>
</tr>
</tbody>
</table>
هشیاریان در بردار پشتیبانی، طبقه‌بندی دست‌کننده...

پنجم جمهوری اسلامی ایران

![شکل ۸ خروجی طبقه‌بندی داده بلافاصله، SVM: طبقه‌بندی منفرد، SVRMs UA: ۷۳٫۰۳ ۹۸٫۶۷ ۹۷٫۵۱ ۱۰۰ ۱۰۰]

<table>
<thead>
<tr>
<th>۱۰۰</th>
<th>۱۰۰</th>
<th>۹۹٫۵۱</th>
<th>۹۸٫۶۷</th>
<th>۷۳٫۰۳</th>
<th>UA</th>
<th>SVRMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۸٫۲۴</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

۵-۲-نتایج روش پیشنهادی در بردار روش‌های طبقه‌بندی همراه با انتخاب ویژگی

این بخش به مقایسه و تحلیل نتایج روش پیشنهادی در بردار استفاده از روش‌های انتخاب ویژگی اختصاص دارد. همان‌طور که در مقدمه گفتیم شد برای مقایسه با ابعاد بالای فضای ویژگی روش‌های جمعیت و انتخاب ویژگی قبلی استفاده هستند و با این مقایسه می‌توان روش پیشنهادی را از دیدگاه موافقت در محاسبات ابعاد فضای ویژگی با ازاینبای نمود به این منظور از بین روش‌های انتخاب ویژگی مختلف یکی از بهترین روش‌ها در تحقیقات اخیر [۴۲ و ۴۳] گزارش گردیده است. در کاربرد الگوریتم پایین داده انتخاب شد. در الگوریتم زننکتی برای انتخاب ویژگی یک جمعیت اولیه از راه‌حل‌های ممکن ۱۰۰ کروموزوم به صورت ناپایدار ایجاد شد. هر کروموزوم از تعدادی زن تشکیل‌شده است. تعداد زن‌ها معادل با تعداد ویژگی‌های ورودی می‌باشد که در ویژگی‌های معامل بالای یکی از ویژگی‌های تصور است. ۱ معادل بودن و ۰ معادل نبودن آن ویژگی در راه‌حل (کروموزوم)

۲ Correlation-based Feature Selection

۳ Chi-square
روش پیشنهادی تصمیم گیری به علت دیگر روش پیشنهادی راه حل مناسبی در مسائل با ابعاد بالای قضاوتی ویژگی است. در داده قرار گرفته روش پیشنهادی حدود ۵ درصد نسبت به پرترین نتیجه در شکل ۹: نمودار تغییرات دقت کلی طبقه بندي در تکرار نسل های مختلف روش های زنیک (آ) نمودار قابل انتظار است. در جدول (۵) این مقایسه در شرایط یکسان داده و ساختار انجام شده است.

روش پیشنهادی اگرچه هزینه محاسباتی بالاتری نسبت به نک طبقه بندي کننده دارد اما در مقایسه با روش زنیک که ماهیت تکراری در پیشنهادی دارد عملکرد نسبتا مشابهی از خود نشان می دهد. اگرچه زمان محاسبات روش های SVM و CFS-دو که SVM

جدول ۷: دقت کلی (OA) طبقه بندي داده پلارمتریک در روشهای مختلف انتخاب ویژگی

<table>
<thead>
<tr>
<th>روش انتخاب ویژگی</th>
<th>زمان محاسباتی (ثانیه)</th>
<th>دقت کلی</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>۱۴۲۸</td>
<td>۹۷/۲۴</td>
</tr>
<tr>
<td>SVM</td>
<td>۱۳۰۵</td>
<td>۹۵/۷۳</td>
</tr>
<tr>
<td>SVM</td>
<td>۶۵۳</td>
<td>۹۰/۰۶</td>
</tr>
<tr>
<td>SVM</td>
<td>۴۲۱</td>
<td>۸۹/۶۲</td>
</tr>
<tr>
<td>SVM</td>
<td>۱۴۲۸</td>
<td>۸۹/۷۴</td>
</tr>
<tr>
<td>SVM</td>
<td>۱۳۰۵</td>
<td>۸۴/۲۷</td>
</tr>
<tr>
<td>SVM</td>
<td>۶۵۳</td>
<td>۷۷/۸۸</td>
</tr>
<tr>
<td>SVM</td>
<td>۴۲۱</td>
<td>۷۹/۷۷</td>
</tr>
<tr>
<td>SVM</td>
<td>۱۴۲۸</td>
<td>SVRM</td>
</tr>
<tr>
<td>SVM</td>
<td>۱۳۰۵</td>
<td>GA</td>
</tr>
<tr>
<td>SVM</td>
<td>۶۵۳</td>
<td>CFS</td>
</tr>
<tr>
<td>SVM</td>
<td>۴۲۱</td>
<td>SVM</td>
</tr>
</tbody>
</table>

۱۴۸
6-نتایج گیری و پیشنهادها
در این مقاله به مبتنی به پهلوی عمکرد طبقه‌بندی کننده SVM در فضای ویژگی با استفاده از دستگاهی متفاوتی از این تکنیک از این فضاها و همچنین کننده SVM متفاوتی از این سیستم‌هایی که در نهایت تجربه آنها تصمیم به‌ندازه نشان می‌دهد، نتایج بااستفاده از تکنیکهای متعددی و احتمال بحثگاه‌های متعددی کننده SVM و با مسائل زمینه شرکت شده‌اند که در نهایت تجربه آنها تصمیم به‌ندازه نشان می‌دهد. نتایج بااستفاده از تکنیکهای متعددی و احتمال بحثگاه‌های متعددی کننده SVM و با مسائل زمینه شرکت شده‌اند که در نهایت تجربه آنها تصمیم به‌ندازه نشان می‌دهد.

3-5-نتایج روش پیشنهادی در برای سایر روش‌های طبقه‌بندی
صحت روش پیشنهادی در برای روش‌های مختلف طبقه‌بندی با دیدگاه‌های مختلف مانند طبقه‌بندی SVM شریعتی (یا پایه‌دانی). شکل مسند عصبی و جنگل پایه‌دانی نسبت به تحقیقات قبلی ارائه شد. در نتیجه این سیستم، همچنین مطالب ناجی دقت روش پیشنهادی در برای روش‌های جنگل تصمیم‌گیری که با استفاده از دقت تجربه متعدد و مستقل همراه با خاصیت تصویری بهره می‌برد است.

روش پیشنهادی این مقاله دارای سه وجه تایباد مهم در برای سایر روش‌های پیشنهادی برای طبقه‌بندی SVM می‌باشد. ابزاری در تولید خود را مانند که است. در نتیجه این سیستم داده‌ها صحت روش پیشنهادی در برای روش‌های جنگل تصمیم‌گیری که با استفاده از دقت تجربه متعدد و مستقل همراه با خاصیت تصویری بهره می‌برد است.

1 Sigmoid
کاهش پیچیدگی فضای ویژگی در مقایسه با روش‌های انتخاب ویژگی مهم‌ترین کار SVM استفاده می‌شود متقابل هدایت داده‌های اندازه‌گیری از منطقه ساختاریکو به‌عنوان داده‌های انتخاب شدن. آزمایش‌ها در سه بخش طراحی و تحلیل شدند. در بخش اول نتایج روش پیشنهادی در برابر سایر روش‌های جمعی با SVM مقایسه شد. نتایج نشان داد میان دقت کلی و در اغلب کلاس‌ها مخصوصاً کلاس‌های بی‌ویژگی‌های مشابه روش پیشنهادی در هر دو داده عملکرد بهتری نسبت به سایر روش‌ها دارد. در بخش دوم توانایی روش پیشنهادی در

Support Vector Random Machines (SVRMs), A Optimum Multiclassifier for Big Data

Mohsen Jafari *1, Mehdi Akhoundzadeh 2

1. PhD. Student, Remote Sensing Department, Faculty of Surveying and Geoinformation Engineering, College of Engineering, University of Tehran
2. Assistant Professor, Remote Sensing Department, Faculty of Surveying and Geoinformation Engineering, College of Engineering, University of Tehran

Abstract
Although, the distinction between the land cover classes was increased in large feature space of remote sensing images, but the low number of training data prevent this. In order to solve this problem, ensemble classification methods can be used instead of individual classifiers. In this paper, a new method for ensemble support vector machine was proposed called “Support Vector Random Machines (SVRMs)”. In proposed method, bootstrap was produced using modification of training data and feature space. Simultaneous boosting SVM was used for basic classifiers. Then, classification map was resulted using SVM fusion of basic classifier. Hyperspectral and Polarimetric SAR data was chosen for evaluation performance of the SVRMs. Experiments were evaluated from three different points of view: First, evaluation against other ensemble SVM methods; second, evaluation against various feature selection methods in classification and third, evaluation against the various basic and new classification methods. As the results, proposed method is 16% better than the individual SVM classifier in hyperspectral data and this is 10% in PolSAR data. Also, the classification results of SVRMs in various classes compared to other SVM ensemble method were improved. The results reported from the proposed method compared to the other feature selection method (Genetic Algorithm) has the effectual performance in classification. The results show that the proposed method presents a better performance compared to the basic classification methods (maximum likelihood and wishart) and advanced classification (random forest and neural network).

Key words: Support Vector Machine (SVM), Ensemble method, Feature space, Bootstarp, Aggregation.

Correspondence Address: Remote Sensing Department, Faculty of Surveying and Geoinformation Engineering, College of Engineering, University of Tehran, Iran.
Tel: +98 9366153637
Email: jafarim@ut.ac.ir