چکیده
امروزه نیاز به شناسایی فاکتورهای مؤثر بر آتشفشات جنگل، مدلهای روند توزیع آتش و نیمی از آنها برای اطلاعاتی که به کار می‌گیرند در این تحصیل منبع و اساس می‌شود. در این تحقیق سعی نمودیم نیز این استفاده از روش‌های فرآیندی برگزاری بر کریکبالور جنگل در منطقه مورد مطالعه از میان فاکتورهای بیوفیزیکی و انسانی بررسی برد. در ادامه با استفاده از کودکی این مدل‌ها سلولی، روش رژیم جنگلی می‌باشد. سپس در این تحصیل منبع و اساس می‌شود. در این تحقیق سعی نمودیم نیز این استفاده از روش‌های فرآیندی برگزاری بر کریکبالور جنگل در منطقه مورد مطالعه از میان فاکتورهای بیوفیزیکی و انسانی بررسی برد.
نشه‌های ریسک و پتانسیل آن‌سوی‌زوری، تحصیلات

زبان‌های تحصیلات ۱۱۰۰۰ کورس گرفته که در این زبان‌های تحصیلات

ان‌سوی‌زوری‌ها و فاکتورهای ناسانگی و بی‌پیرویکی

منطقه‌ای و به‌کارگیری تحلیلهای مکانی برای تولید

نشه‌های تولیدی استفاده شدند. اولین مدل

گستر روز متری هر دهه در سال ۱۸۹۱ ارائه گردید

که مدل نیمه تجربی برای محاسبه سوخت

گستر روز تا فعالیت و غیر فعالیت در جنگل‌های

مکرو‌گرافی برگ‌آساید بود. این اثر شده توسط

راترول ۱۳۱ نیز به محاسبه بیشترین نرخ گسترش آتش

با استفاده از بک ماکائی ری‌بزارد که برای

این روش‌ها، در مطالعه‌ای بین‌می‌گیرد که ن روی

ابنج بک در این محدودیت و مسیرهای چهار

است که نرخ گسترش آن می‌باشد. [۱۲] بک

ماجیسی در اتوماتیک سلوک را برای پیش‌برنی

گستر روز متری توسه داد که تحت سطح‌های

مختلف آب و هوای و توبوگرافی قابل استفاده بود. جالش

اصیل موجود در این مدل نحوه ارتباط آن با فاکتورهای

ایستگی و پویایی مکانی و زمانی تأثیرگذار بر گسترش

ان‌سوی‌زوری نظر شیب، سرعت و جهت باد بود. [۱۴] و

۱۵ نیز در سال ۲۰۱۵ برای دریافت مقدار از مدل‌های

سولوی پراکنده که با استفاده از روش‌های بهینه‌سازی

عددی، نرخ حالت مسیری از این روش را به‌پایان

پس از مطالعات و پژوهش‌های گسترده در این رابطه

[۱۶، ۱۷، ۱۸ و ۱۹] محققین درمان به کمک که استفاده از

روش‌های هم‌جنس اتوماتیک سلوک و نزدیک به‌کارگیری

روش‌های پراکنده که برای نرخ‌های نهش‌های می‌تواند نتایج مطلوب‌تری را به همراه

داشت. این اثر رابطه [۱۲] ب ریسک و ارزیابی

ضایع‌های کارافلکسیون، برخی از جهت‌گیری و بی‌پیرویکی

شیب‌هایی که در اتوماتیک سلوک را برداشت و از روش بی‌پیرویکی

۱ ریچارد C. روث کنر

۲ آتوماتیک
دو روش پیشنهادی
روند کلی روش پیشنهادی این تحقیق در شکل (۱) ارائه شده است.

۱- ۲: روش پیشنهادی
دانهای مکانی ویژگی‌های خاصی دارد که آنها از سایر انواع داده، متفاوت می‌کند. در مواردی از این ویژگی‌ها عبارتند از: (الف) خودوبیانکی مکانی، (ب) افزایش فاصله است (د) روند ویژگی‌های با بیان گزارش‌گران محدود و تغییر خودوبیانکی مکانی در فضاس. روش‌های تجزیه‌بندی عمومی (OLS) و (GA) یا این روش است. از نظر گرفتن ویژگی‌های مکانی بین داده‌ها، برای تمامی نقاط منطقه بک دسته جواب ارائه می‌دهد.
GWR به صورت دیال‌ب در سال ۱۹۹۸، روش توسط [۲] مطرح شد. این روش، ویژگی‌های مکانی مشاهده‌های قابلیت‌سنجی محاسبه در قابلیت‌سنجی محاسبه در قابلیت‌سنجی محاسبه است. تا کنون گزارش می‌شود و به‌دلیل وجود ناشناخته مکانی، ضرایب رگرسیون به‌طور محیطی و برای هر نقطه GWR به طور جدایی به دست آید. رابطه کلی به شکل زیر است (۱) است [۲]:

\[y = \beta_0(u,v) + \sum_{j=1}^{p} \beta_j(u,v)X_{1j} + \epsilon \]

۳: روش پیشنهادی
که در (۲) متغیر وابسته (متغیر آنچه ضریب ثابت رگرسیون X_{1j} متغیر مستقل (فاکتورهای آتشف‌سوزی محدوده X_{1j} متغیر مستقل (FACTOR_1 متغیر مستقل مستقل، \(\varepsilon \) ایجاد مدل و \(\beta \) ضرایب رگرسیون هستند.

1. Markov Chain
2. Multi Objective Land Allocation
3. Logistic Regression
4. Geographically Weighted Regression (GWR)
5. Genetic Algorithm
می‌باشد.

$$\hat{\beta}(u,v) = (X^TW(u,v)X)^{-1}X^TW(u,v)y$$

(رابطه (۲))

$$\beta^* = \text{تحلیل تونلاوی مشترکی،}$$

$$\text{برخوردار است و تاکنون هسته‌هایی متعددی}$$

$$\text{بدین منظور ارائه شده است. یک نمونه از این هسته‌ها}$$

$$\text{که کارآمد بالایی را از خود نشان داده است هسته}$$

$$\text{مکعبی سه‌گانگی می‌باشد که در رابطه (۲) آمده است}$$

$$\begin{bmatrix}
W_1(u,v) & 0 & 0 \\
0 & 0 & W_2(u,v)
\end{bmatrix}$$

(رابطه (۳))

۱ Kernels
۲ Tricube
الگوریتم زنگیک، یک الگوریتم انتخاب جستجوگرایانه است که بر اساس انتخاب طبیعی کار می‌کند. در الگوریتم زنگیک، یک جمعیت از راه‌حل‌های تامین‌شده (کروموزوم) به سمت بهینه کلی حرکت می‌کند. در آنها هر یک از فاکتورها تنشگیر دهدهنده یکی از زنگ‌های کروموزوم می‌باشد. جمعیت (نسل) اول کروموزوم‌ها به صورت تصادفی تولید شده و روند بهینه‌سازی از این سل شروع می‌شود. در این تحقیق هر کروموزوم دارای ۱۴ زن (فاکتور) با مقادیر باینری مشابه شکل (۲) که هر از تعداد زن جهت ترکیب انتخاب می‌شود. در این حالت، مقدار ۱ به زن‌های انتخاب شده و مقدار ۰ به زن‌های انتخاب نشده اختصاص داده می‌شود.

به عنوان مثال، در کروموزوم شکل (۲)، تک‌تایی از زن‌ها شامل ۱۰ زن شماره ۱، ۲، ۳، ۴، ۵، ۶، ۷، ۸، ۹ و ۱۰ در نظر گرفته شد است. در این تحقیق از ترکیب ضریب تکنقطه‌ای و چهار کوسین استفاده شده است [۲۸]. در هر نسل تابع برازش برای تمامی کروموزوم‌های آن سل محاسبه می‌شود. این تابع برای هر مجموعه تابع هدف سنته بهینه‌سازی است. تابع برای کروموزوم‌زنگیک پیشنهادی این تحقیق، ۱-۲, ۵ هدف می‌باشد. کمیته نموده است.

\[
W_{ij} = \begin{cases}
(1 - \left(\frac{d_{ij}}{h}\right)^3) & , d_{ij} \leq h \\
0 & , d_{ij} > h
\end{cases}
\]

راه‌پله (۴) که وزن جغرافیایی مربوط به مشاهده زام در نقطه \(W_{ij}\) فاصله قلیدسی دو نقطه \(i\) و \(j\) در ناشی پارامتر پهنای بنای مشاهده \(h\) باید بهینه گردد. یکی از روش‌هایی که معمولاً برای تعیین پهنای بنای بهینه مورد استفاده قرار می‌گیرد، روش اعتبارسنجی متقابل است [۲۴] که به صورت راه‌پله (۵) بیان می‌شود:

\[
\sum_{i=1}^{n} [(y_i - \hat{y}_i)^2]
\]

راه‌پله (۵) که در این راه‌پله \(n\) تعداد مشاهدات، \(y_i\) مشاهده \(i\) و \(\hat{y}_i\) مقدار پیش‌بینی شده مشاهده \(i\) است. میانگین مشاهدات است.

اثبات فاکتورهای بهینه

در این مرحله، نسبت به انتخاب زیرمجموعه‌ای از فاکتورها که به‌طور آراز این الگوریتم GWR بهترین عملکرد را داشته باشد. اقدام می‌شود. در این تحقیق از الگوریتم زنگیک ارزش‌های سطه در [۲۷] برای انتخاب فاکتورهای بهینه استفاده شده است. این الگوریتم به صورت ضمیم، آبیستگی بین فاکتورها را نیز در نظر می‌گیرد و با توجه به آن بهترین زیرمجموعه از فاکتورها را انتخاب می‌کند.

2 Search Heuristic
3 Single Point Crossover
4 Gaussian Mutation

1 Cross Validation
3-4-1-2

اثربخشی‌های سازوکار به‌عنوان یکی از مهره‌هایی که در پژوهش‌های تحقیقی به‌عنوان یکی از مهم‌ترین مهره‌های تجربه و زمینه‌های پژوهشی نشان داده شده است.

بر اساس سازوکار نخبه‌گرانی یا بهترین کروموزوم هر نسل به‌طور مستقیم به نسل بعد منتقل می‌گردد. همچنین بر اساس سازوکار انتخاب این تحقیق، تعدادی از کروموزوم‌های تابع برآورده در هر نسل بر اساس روش یکنواخت انتفاضه ۳ اعمال انتخاب‌شده و محتوای این کروموزوم‌ها اعمال تغییراتی از سوی عملکردهای زنده‌کننده (ترکیب ضربی و جهش) به نسل بعد انتقال می‌پایند. سپس این نسل جدید از کروموزوم‌های تولید شده در حلقه تکرار بعده ماه از استفاده قرار می‌گیرند.

case 2: نحوه فرارگیری زن‌ها در یک کروموزوم

\[S_{ij}^t = \frac{A_i}{A_j} \]

که در این رابطه، \(A_i \) و \(A_j \) می‌باشند و نسبت محاصره و \(S_{ij} \) میزان سلول است. مقدار \(S \) برای یک سلول تغییر وضعیت یافته بر اساس ۱ تا ۲ و برای سلول‌های در حال تغییر وضعیت، مقادیری بین ۰ و ۲ و برای سلول‌های بدون تغییر، برابر با ۰ است.

: تغییر همبستگی در اوتوماتی سلولی، می‌تواند به صورت مختلفی انجام بگیرد. نظر شکل (۳) که به همبستگی مصرف ۳ معروف است و شاخص همبستگی هشته سلول مجزا سلول مرکزی است.

<table>
<thead>
<tr>
<th>i-1,j-1</th>
<th>i-1,j</th>
<th>i-1,j+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>i,j-1</td>
<td>i,j</td>
<td>i,j+1</td>
</tr>
<tr>
<td>i+1,j-1</td>
<td>i+1,j</td>
<td>i+1,j+1</td>
</tr>
</tbody>
</table>

شکل 3: هشته همبستگی موربنتایین، وضعیت هر سلول در لحظه ۱ به‌صورت تابعی از وضعیت خود سلول و سلول‌های همسایه آن در لحظه ۱ مشابه که به آن تابع اوتوماتی سلولی گفته می‌شود که در حالت دو بعدی به‌صورت رابطه (۱۰) می‌شود:

\[S_{ij}^{t+1} = S_{ij}^t + S_{(a)}^t(X_1, X_2, \ldots, X_n) \]

\[S_{ij}^{t+1} = S_{ij}^t + S_{(a)}^t(X_1, X_2, \ldots, X_n) \]

در رابطه فوق، \(S_{ij}^t \) نسبت ثابتی از وضعیت سلول‌های همسایه سلول مرکزی به‌دست می‌کند و از لحظه ۱ تعداد سلول‌های همسایه سلول مورد نظر است. در این تحقیق \(S_{(a)}^t \) نسبت سلول‌های آن‌گرفته به کل سلول‌های

Moore Neighborhood
ب. شماره یک (وضعیت آنتن نگرفته سلول): نشان دهنده مربع شماره دو (وضعیت آنتن گرفته سلول) نشان دهنده تعداد سلول‌های موجود در حالت یک در زمان t و نشان دهنده تعداد سلول‌های موجود در حالت دو در زمان t+1 با نا، برای نمونه، در ماتریس انتقال LCAB مقدار MLC احتمال تغییر از حالت یک در زمان t به حالت دو در زمان t+1 است. در این روش، کل منطقه مورد مطالعه را به پاز نمایی زمانی بخشی‌سازی می‌کند. سپس تعداد سلول‌های مربوط به حالت آتش و غیر آتش (سلول از زمان t و t+1 مشخص می‌شود. در نهایت، مقدار احتمال تغییر وضعیت از هر حالت در زمان t به حالت دیگر در زمان t+1 با توجه به تعداد سلول‌های مربوط به حالت‌های مختلف در پاز نمایی زمانی t و t+1 تعیین می‌شود. [۳۵] اندارد ماتریس انتقال به توجه به تعداد پاز نمایی‌های موجود در سطح متغیر است.

CA-Markov

یکی از روش‌های پرکاربرد در مدلسازی‌های گسترش شهری و گسترش آتش است که روش‌اترکبی برای تخصص ویژه‌ای است که بر سر سلول‌ها یافته در این روش ابتدا تعداد سلول‌های قابل گسترش توسط روش مارکوف شبیه‌سازی می‌شود. سپس سلول‌های مستعد برای گسترش در پاز نمایی زمانی مشخص شده برای انجام تکرار مشخص شده برای انجام تکرار است. البته در نظر گرفتن تعداد سلول‌های قابل گسترش و ظرفیت تیاترتیبی، شناسایی می‌شود. در هر پاز نمایی زمانی با شناسایی شده به عنوان سلول‌های مستعد برای گسترش، با نشانه‌های موجود در ابتدا باید زمانی، هم‌توانی داده‌ها می‌شود. در نهایت به اتمام باید به زمانی مشخص شده، نشانه‌های مورد نظر بیشتری می‌شود. [۳۶]

۴-۲- زنجیره مارکوف

یکی از روش‌های زوج‌های انتقال این روش انتقال از یک حالت به حالت دیگر در مدلسازی‌های تصاویری آن صورت می‌پذیرد. با توجه به ویژگی مارکوف، حالت بعدی یک متغیر فقط به حالت فعلی آن متغیر وابسته به واحد واقع قبل از آن است. نیز به‌طور ۱۳ و ۱۲ زنجیره مارکوف از جمله هوش‌های حافظه‌دار محسوب می‌شود و به طول حافظه‌های که مقدار احتمال ممکن برای حالت بعدی پوسیده آن محاسبه می‌گردد. مدت زمان مارکوف گفته می‌شود. در مدلسازی‌های که مدت زمان مارکوف به‌طور احتمالی جزئی می‌شود، احتمال تغییر حالت یک محله‌ی ابزار احتمالاتی شرطی، به‌صورت رابطه (۱۱) تعیین می‌شود. [{۳۷}]

\[P(i \rightarrow j) = P[X_{i+1} = j | X_i = i] \]

که رابطه فوق، احتمال تغییر حالت یک محله‌ی از زمان t به زمان t+1 را بیان می‌کند. احتمال تغییر حالت یک محله‌ی از زنجیره مارکوف دارای اهمیت بسیار است و بر اساس نظریات آماری و مدلسازی‌های تغییر حالت یک زنجیره مارکوف بوده و با احتمال انتقال از حالت t به حالت t+1 است. {[۳۳]}. زنجیره مارکوف شامل سه ماتریس انتقال که ارتباط بین این ماتریس‌ها در رابطه‌های (۱۲) و (۱۳) لبیرشده است. {[۳۴]}

\[M_{LC} \times M_i = M_{i+1} \]

راه‌حل (۱۲)

\[[LCA_{AA} \quad LCA_{AB}] \times [A_i] = [A_{i+1}] \]

راه‌حل (۱۳)

که در رابطه (۱۴)، ماتریس انتقال بین وضعیت آنتن گرفته و آنتن نگرفته برای سلول‌های مدت زمان t و t+1 به‌طور مستقیم در دو زمان t و t+1 می‌باشد که به این رابطه به‌صورت رابطه (۱۳) می‌باشد. در رابطه (۱۳)، A نشان دهنده متغیر همسایگی باشد که به‌طور مستقیم بر روی وضعیت سلول مرکزی در لحظه t+1 موثر است.
ساخته می‌شود از این روش در مواردی که نیاز به مشخص کردن میزان تأثیر فاکتورهای مستقل بر روی متغیر وابسته است، استفاده می‌شود. از مزایای این روش می‌توان به در نظر گرفتن اثرات متقابل بین جدیدی متغیر در قالب یک عبارت بولی و تلیف متغیرها با صورتی که مدل نهایی همچنان قالب یک مدل رگرسیون را داشته و ضرایب به سادگی تفسیر و آزمون‌شونده است. کردن [39] فرمول رگرسیون لجستیک به صورت رابطه (14):

\[P(X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}} \]

رابطه (14)

که بین گ ر احتمال نتیجه و ضریب هر سلول است که از یک برای تولید نتیجه انتقال (نقشه شناسی) استفاده می‌شود، X به آماره‌های مستقل که فاکتورهای مربوط به آنتی‌سیتوژن جملات بیشتر و ضریب رگرسیون α ثابت بیان کنند. برای آوردن بهترین ترکیب ضرایب برازش مدل (α, β₁, β₂) با یک آزمون شونده، برای آوردن روش‌های لجستیک از روش بیشینه درستنامه‌ای که در رابطه (15) پیامدها استفاده می‌کند [40]:

\[L = \prod_{i=1}^{n} P(Y_i | \mu_i) \times (1 - P(Y_i | \mu_i)) \]

رابطه (15)

که در این رابطه L به احتمال N، β₀، β₁، β₂، γ₁، γ₂ و نامربه‌های مشاهده شده مقدار می‌باشد و با استفاده از دو روش متغیر وابسته برای نمونه‌ی یک در این تحقیق منطقه‌های منطقه‌های دیده و استفاده می‌باشد. پیشینی مشاهده برای معنی‌فاضل وابسته برای نمونه‌ی است (رابطه (16)).

\[\mu_i = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_i + \beta_2 Z_i)}} \]

رابطه (16)

که برای پیش‌بینی کردن رابطه (15).

با یک رابطه غیر خطی (رابطه (17)) حل شود:

\[\sum_{i=0}^{N}(y_i - \mu_i) \times x_{ij} = 0 \]

رابطه (17)

1 Combining Boolean
که در این رابطه ریاضی بیان مقدار مشاهده شده فاکتور (به‌عنوان نمونه ۱ است که از الگوریتم نیوتن-رافسون) برای حالت استفاده می‌شود. با طی مراحل فوق، تغییرات لجستیک قادر به بروز ضرایب رابطه است.

روش‌های ارزیابی نتایج

در این تحقیق از سه میار دقت کلی، ساخت کاپا و شاخص عامل نسبی استفاده شده است. در این مقاله میزان تطابق بین نشه مدل‌های شده و نشه بر اساس تغییرات مصرف شده در شاخص کاپا بر خلاف دقت کلی از نظر مقدار ماتریس مقایسه برای محاسبه دقت استفاده می‌شود و این بکارت مهم برای شاخص کاپا می‌باشد. این در حالت است که هر دو میار در باین‌های مختلف دقت مکان، دارای نقش هستند. دقت کلی (۱۸ و ۱۹) مبوده بین این دو میار می‌باشد.

رابطه‌های (۱۸ و ۱۹) مبوده بین این دو میار می‌باشد.

کاپا رابطه (۱۹):

\[\text{Kappa} = \frac{\sum_{i=1}^{k} P_{ii} - \sum_{i=1}^{k} P_{ij} P_{ji}}{1 - \sum_{i=1}^{k} P_{ij} P_{ji}} \]

برای رابطه (۱۹)

1. Overall Accuracy
2. Kappa Index
3. Relative Operating Characteristic

۱۰۷
دقیق برای تمام منطقه مورد مطالعه در انتخاب نیوده.
برای کسب این مقدار از مکان‌هایی، به روش کریجینگ عمومی ۳ با مدل نمایی، بهره گرفته‌ی که به عوامل نمونه، شکل (۲) این داده‌ها را برای تاریخ ۲۶ آبان ۱۳۸۹
نمایش می‌دهد. نطقه‌های نمایش داده شده در قسمت
آماده‌سازی داده‌ها به عوامل نمونه بوده که فقط
شکل‌های با توان تفکیک مکانی ۳ متر
نمایش داده شده‌اند.
با استفاده از مدل رقیمی انتفاضی منطقه تهیه شده
توسط سازمان نقشه‌برداری کشور با توان تفکیک
مکانی ۲۰ متر، فاقد اطلاعاتی در جهت شبیه
با توان تفکیک مکانی ۳۰ متر تولید شده است. لاشهای
اطلاعاتی مربوط به مناطق مسکونی، راه‌ها و رودخانه‌ها
دارای ساختار برداری ۳ بودند. برای استفاده از این
داده‌ها در کشوری‌های پیشرفته این تحقیق
با استفاده از آنتن‌های فیزیکی و رادیولوژیی
لاشهایی ایجادی با توان تفکیک مکانی ۳۰ متر
تولید گردید. در این لایه‌ها، مقدار هر سول
پیان‌شکلی از نمودار ترین منطقه مسکونی، جاده با
رودخانه است.
بهدلیل کم بودن تعداد ایستگاه‌های هوشمند تریدک
به منطقه، همان‌طور که در شکل (۸) ملاحظه می‌شود،
tعداد ۱۰۰۰ نقطه بر سری تصادفی تراکم پیش‌تر
محدوده آنتن در منطقه مورد مطالعه با توزیع بکوارخ
تولید گردید. این کار به این عمل صورت گرفت که
روش GWR با تعداد نقاط بالا، نتیجه مطلوب‌تری را
ارائه می‌کند.

2 Interpolation
3 Ordinary Kriging
4 Positional Resolution
5 Vector
6 Euclidean Distance
7 Raster

نتیجه‌گیری
تاریخ نمره پژوهشی - مهندسی فناوری اطلاعات مکانی
سال پنجم شماره سوم پاییز ۱۳۹۶

۲-۳ آماده‌سازی داده‌ها
قسمت عمده داده‌های مورد استفاده در این تحقیق
 شامل منطقه واقعی سوخته شده در آنت‌سروی
۲۶ آبان ۱۳۸۹ و آنت‌سروی ۲۴ تیر ۱۳۹۰ که در
شکل (۵) نمایش داده‌شدست و داده‌های دیگری
تظییر مدل رقیمی انتفاضی منطقه، شکبک را،
رودخانه‌ها، کاربری اراضی، جنس خاک و مناطق
مسکونی که در شکل (۶) نمایش داده‌شدست از
سازمان نقشه‌برداری کل کشور و سازمان منابع طبیعی
استان‌های خراسان شمالی، گلستان و سمنان تهیه
شدست. لایه‌های اطلاعاتی مربوط به کاربری اراضی و
جنس خاک در مقياس ۱۰۰۰۰۰۰ و شکبک را و
رودخانه‌ها در مقياس ۱۰۰۰۰ و شکبک را، و
سال ۸۵ می‌باشد. همچنین داده‌های هوشمند شامل
۵ ایستگاه هوشمند تریدک با منطقه مورد مطالعه به همراه مختصات مکانی آنها،
از طرف سازمان هوشمند تریدک به دست آمده است.
این داده‌ها شامل حداکثر، حداقل و متوسط دما،
میزان بارش، حداکثر سرعت باد و جهت عمده وزش باد
می‌باشد. به دلیل این که مقداری فاقد می‌باشد،
به سوت

1 Digital Elevation Model (DEM)
مدلسازی گسترش آتش‌سوزی جنگلی بر مبنای اتوماتیک

پرهام پیروانی، حمیدرضا مرادیان، آیین رامی

شکل ۵: آتش‌سوزی‌های اتفاق‌افتده در منطقه مورد مطالعه در تاریخ‌های بالا (۲۶ آبان ۱۳۸۹ و ب) ۲۴ تیر ۱۳۹۰

شکل ۶: لاشه‌های اطلاعاتی مورد استفاده در این تحقیق (الف) مناطق مسکونی، (ب) کاربری اراضی، (ج) مدل رفومی ارتفاعی منطقه، (د) رودخانه‌ها، (ه) شبکه راه‌ها و (و) جنس خاک

۱۰۹
4-پیادهسازی و ارزیابی نتایج

در این تحقیق از محیط برنامه‌نویسی MATLAB مدلسازی گسترده انتشار سوزگاری جنگل بر روی یک سیستم ویندوز ۶۴ بیتی استفاده شد. ابزار استاندارد ۱۴ فاکتور مختلف که در جدول (۱) آرائه شده‌اند بر انتشار سوزگاری جنگل در منطقه مورد مطالعه مورد بررسی قرار گرفته است. این مشاهدات به صورت دودویی (۱) برای آتش و (۱) برای گشاده علاوه بر مختصات نقاط که برای محاسبه وزن‌های جغرافیایی لازم می‌باشد به عناوین دیگر ورودی‌های الگوریتم برای حل مسأله استفاده شدند.

شکل ۸: نقاط تصادفی تولید شده در منطقه مورد مطالعه

شکل ۷: لایه‌های اطلاعاتی تولید شده حاشیه درون و پاییز (الف) میزان بارندگی (mm). (ب) جهت باد غالب. (ج) حداکثر سرعت باد (m/s) (د) متوسط دما (℃) (ه) دما حداکثر دما (℃) و (و) حداکثر دما (℃) بین ایستگاه‌های هواشناسی نزدیک منطقه مورد مطالعه برای تاریخ ۲۶ آبان ۱۳۸۹
جدول 1: فاکتورهای مورد مطالعه در این تحقیق

<table>
<thead>
<tr>
<th>فاکتور</th>
<th>شماره</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>متوسط دما (°C)</td>
<td>11</td>
<td>۶</td>
</tr>
<tr>
<td>ارتفاع (m)</td>
<td>۲</td>
<td>۱</td>
</tr>
<tr>
<td>مقدار شیب جهت‌های غرب-شرق</td>
<td>۳</td>
<td></td>
</tr>
<tr>
<td>حداکثر سرعت باد (m/s)</td>
<td>۴</td>
<td></td>
</tr>
<tr>
<td>جهت باد غالب</td>
<td>۵</td>
<td>۵</td>
</tr>
<tr>
<td>حداکثر دما (°C)</td>
<td>۶</td>
<td>۶</td>
</tr>
<tr>
<td>حداکثر دما (mm)</td>
<td>۷</td>
<td>۷</td>
</tr>
<tr>
<td>جنس خاک</td>
<td>۸</td>
<td>۸</td>
</tr>
<tr>
<td>کاربری زمین</td>
<td>۹</td>
<td>۹</td>
</tr>
</tbody>
</table>

این جدول از اجرای گورامی‌ها یکی از ابتدا همبستگی بین داده‌ها بررسی شود، بدين گردي (24): Cov(X, Y) = \frac{\sum(X_i - \bar{X})(Y_i - \bar{Y})}{n}

\text{رابطه} (24) که در آن \text{Cov}(X, Y) کورواریانس دو مجموعه داده \text{x} و \text{y}، \bar{X} و \bar{Y} میانگین این دو مجموعه داده، زبان مجموعه داده‌های همبستگی بين دو می‌باشد.

سکل ۹: نمایشی از همبستگی میانگین داده‌های (الف) ۲۲ آبان ۱۳۸۹ و (ب) ۲۲ تیر ۱۳۹۰

در گورامی‌ها از هسته‌های (4) استفاده گردید و برای بهینه‌سازی پارامتر پیش‌بینی اندازه‌بندی روش اعتبارسنجی متقابل به‌کار گرفته شد. گرایش‌ها به همان ترتیبی که در جدول (1) ارائه شده است، کمک می‌کنند روش‌های گورامی‌ها گزینه‌ای را تشکیل دادند. مقدار اخراج‌های گورامی‌ها گزینه‌ای مورد استفاده در این تحقیق نیز در جدول (2) آمده است. پس از اجرا گورامی‌ها، مقدار R^2 برابر با ۰.۹۷۱ به دست
 حال با توجه به فاکتورهای مشخص شده به عنوان فاکتورهای مؤثر بر آنتی‌سوزی، اقدام به مدل‌سازی گسترش آن در منطقه مورد مطالعه می‌کنیم. ترکیب اطلاعات سلولی و روش‌های زنجیره مارکوف، و رگرسیون لجستیک سبب می‌شود که بتوان مولا توجه آن را در هر لحظه مورد بررسی قرار داد. در الگوریتم اطلاعات سلولی با به کارگیری روش زنجیره مارکوف به همراه MOLA همسایگی 3، 5 و 7 استفاده شده است که در شکل (11) نمایش داده شده‌اند.

<table>
<thead>
<tr>
<th>بارامتر</th>
<th>مقادیر</th>
</tr>
</thead>
<tbody>
<tr>
<td>اندازه جمعیت</td>
<td>10</td>
</tr>
<tr>
<td>تعداد نسل</td>
<td>100</td>
</tr>
<tr>
<td>نرخ ترکیب ضریب</td>
<td>0/8</td>
</tr>
<tr>
<td>کسر مهاجرت</td>
<td>0/3</td>
</tr>
<tr>
<td>فواصل مهاجرت</td>
<td>20</td>
</tr>
<tr>
<td>مقياس (جهش گوسین)</td>
<td>0/5</td>
</tr>
<tr>
<td>کاهش (جهش گوسین)</td>
<td>0/7</td>
</tr>
<tr>
<td>تعداد نخبه</td>
<td>1</td>
</tr>
</tbody>
</table>

جدول 2: پارامترهای الگوریتم زنجیره موردن استفاده

پدر بزرگترین مقدار و میانگین مقادیر برابر با
و (ب) میانگین فاصله بین افراد هر نسل

![نمودار]

Population Size
Number of Generations
Crossover Rate
Migration Fraction
Migration Interval
Scale (Gaussian Mutation)
Shrink (Gaussian Mutation)
Elite Count
جدول 4: شاخص کاوا و زمان دریافت حاصل از مدل‌سازی

جدول 3: شاخص کاوا و زمان دریافت حاصل از مدل‌سازی

مدل‌سازی گسترش آتش‌سوزی خیابان بر صورت اپتیامنی ...
برهام پیروطالی، مهدیه صحرائیان، امین رامی
و توان‌های تفکیک مکانی مختلف مشخص شده است. نقشه‌های مدل‌سازی کستنی آتش‌سوزی جنگل حاصل از اجرای الگوریتم اتوماتیک سولویا با به‌کارگیری روش مارکوف به همراه MOLA برای تاریخ‌های ۱۳۸۹، ۱۳۹۰ و ۱۳۹۱، شش تاریخ مشخص شده که در این مدل‌سازی به تفکیک‌های همسایگی ۲، ۳، ۴ و همچنین توان‌های تفکیک مکانی به‌پینه استفاده گردیده که شکل‌های (۱۲ و ۱۳) به عنوان نمونه این نقشه‌ها را با فیلتر همسایگی ۳ نمایش می‌دهند.

جدول ۵: تعداد تکرارهای مورد نیاز اتوماتیک سولویا برای هر دو منطقه مورد مطالعه به توجه به فیلترهای همسایگی و توان‌های تفکیک مکانی مختلف

<table>
<thead>
<tr>
<th>تعداد تکرار برنامه</th>
<th>فیلتر همسایگی</th>
</tr>
</thead>
<tbody>
<tr>
<td>پورتال (متراژ)</td>
<td>۹۰ (منطقه اول)</td>
</tr>
<tr>
<td>مورفی (منطقه اول)</td>
<td>۶۰ (منطقه اول)</td>
</tr>
<tr>
<td>پورتال (منطقه دوم)</td>
<td>۳۰ (منطقه اول)</td>
</tr>
<tr>
<td>مورفی (منطقه دوم)</td>
<td>۲۰ (منطقه اول)</td>
</tr>
<tr>
<td>پورتال (منطقه دوم)</td>
<td>۱۵ (منطقه اول)</td>
</tr>
<tr>
<td>مورفی (منطقه دوم)</td>
<td>۱۰ (منطقه اول)</td>
</tr>
<tr>
<td>پورتال (منطقه دوم)</td>
<td>۵ (منطقه اول)</td>
</tr>
<tr>
<td>مورفی (منطقه دوم)</td>
<td>۴۴ (منطقه اول)</td>
</tr>
<tr>
<td>پورتال (منطقه دوم)</td>
<td>۶۰ (منطقه اول)</td>
</tr>
<tr>
<td>مورفی (منطقه دوم)</td>
<td>۳۴ (منطقه اول)</td>
</tr>
<tr>
<td>پورتال (منطقه دوم)</td>
<td>۲۰ (منطقه اول)</td>
</tr>
<tr>
<td>مورفی (منطقه دوم)</td>
<td>۱۰ (منطقه اول)</td>
</tr>
<tr>
<td>پورتال (منطقه دوم)</td>
<td>۷۲ (منطقه اول)</td>
</tr>
<tr>
<td>مورفی (منطقه دوم)</td>
<td>۲۲ (منطقه اول)</td>
</tr>
<tr>
<td>پورتال (منطقه دوم)</td>
<td>۵۱ (منطقه اول)</td>
</tr>
<tr>
<td>مورفی (منطقه دوم)</td>
<td>۳۱ (منطقه اول)</td>
</tr>
<tr>
<td>پورتال (منطقه دوم)</td>
<td>۵۴ (منطقه اول)</td>
</tr>
<tr>
<td>مورفی (منطقه دوم)</td>
<td>۱۰ (منطقه اول)</td>
</tr>
<tr>
<td>پورتال (منطقه دوم)</td>
<td>۱۳۱ (منطقه دوم)</td>
</tr>
<tr>
<td>مورفی (منطقه دوم)</td>
<td>۴۸۴ (منطقه دوم)</td>
</tr>
</tbody>
</table>

شکل ۱۲: نقشه مدل‌سازی آتش حاصل از اجرای الگوریتم اتوماتیک سولویا با به‌کارگیری روش مارکوف به همراه MOLA برای تاریخ‌های ۱۳۸۹، ۱۳۹۰ و ۱۳۹۱، شش تاریخ مشخص شده که در این مدل‌سازی به تفکیک‌های همسایگی ۲، ۳، ۴ و همچنین توان‌های تفکیک مکانی به‌پینه استفاده گردیده که شکل‌های (۱۲ و ۱۳) به عنوان نمونه این نقشه‌ها را با فیلتر همسایگی ۳ نمایش می‌دهند.

جهت تعبیم مزایا دقیق و صحیح باید تمامی محاسبات در پیشینه حاصل از مدل‌سازی، از شامل گاها، دقیق گا و شامل نسبی استفاده شده است. با توجه به اطلاعات موجود در

۱۱۴
جدول 6: شاخص کاها، دقت کلي و شاخص عامل نسبی برای مدلسازی با مدلسازی همزمان با مدلگری روش مارکوف به همراه MOLA برای تریال 26 آبان 1389.

<table>
<thead>
<tr>
<th>شاخص عامل نسبی</th>
<th>دقت کلی</th>
<th>شاخص کاها</th>
<th>طنون</th>
<th>تفکیک همسایگی</th>
<th>مکانی (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.96</td>
<td>3.23</td>
<td>0.888</td>
<td>0.951</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>0.95</td>
<td>5.5</td>
<td>0.882</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.94</td>
<td>7.77</td>
<td>0.884</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.93</td>
<td>3.3</td>
<td>0.877</td>
<td>0.948</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.92</td>
<td>5.5</td>
<td>0.874</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.91</td>
<td>6.77</td>
<td>0.873</td>
<td>0.946</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td>6.77</td>
<td>0.872</td>
<td>0.946</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 7: شاخص کاها، دقت کلي و شاخص عامل نسبی برای مدلسازی با مدلگری روش مارکوف به همراه MOLA برای تریال 24 برای تاریخ 1390.

<table>
<thead>
<tr>
<th>شاخص عامل نسبی</th>
<th>دقت کلی</th>
<th>شاخص کاها</th>
<th>طنون</th>
<th>تفکیک همسایگی</th>
<th>مکانی (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.98</td>
<td>3.23</td>
<td>0.870</td>
<td>0.951</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>0.97</td>
<td>5.5</td>
<td>0.864</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.96</td>
<td>7.77</td>
<td>0.862</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td>3.3</td>
<td>0.851</td>
<td>0.948</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.94</td>
<td>5.5</td>
<td>0.843</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.93</td>
<td>6.77</td>
<td>0.842</td>
<td>0.946</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.92</td>
<td>5.5</td>
<td>0.839</td>
<td>0.946</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.91</td>
<td>6.77</td>
<td>0.838</td>
<td>0.946</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل 13: نقشه مدلسازی گسترش آتش حاصل از اجرای الگوریتم همزمان سویل با مدلگری روش مارکوف به همراه MOLA برای تاریخ 24 اسفند 1390 از فیلتر همسایگی 3×3 و طنون های تفکیک مکانی (الف) 5 متر (ب) 10 متر و (ج) 15 متر.
برای مقایسه الگوریتم اتوماتی سلولی با یک کاربردی روشن‌گر سپری‌سازی MOLA، اقدام به پیاده‌سازی الگوریتم اتوماتی سلولی با یک کاربردی روشن‌گر سپری‌سازی لجستیک کردیم. از این روش با در نظر گرفتن نقشه فاکتورهای مربوط بر آتش‌سوزی، محدوده آتش‌سوزی و اجرای روشن‌گر سپری‌سازی لجستیک، ماتریس احتمال تغییر وضعیت سلول‌ها را به‌دست آوردیم. سپس با استفاده از این ماتریس، نقشه احتمال تغییر وضعیت سلول‌ها را در توان‌های

![نمودار]

شکل 14: نقشه احتمال تغییر وضعیت سلول‌ها حاصل از روش‌گر سپری‌سازی لجستیک برای تاریخ 26 آبان 1389 با توان‌های

![نمودار]

شکل 15: نقشه احتمال تغییر وضعیت سلول‌ها حاصل از روش‌گر سپری‌سازی لجستیک برای تاریخ 24 تیر 1390 با توان‌های

با به‌کارگیری روشن‌گر سپری‌سازی لجستیک، با توان‌های

تفکیک مکانی مختلفی مختلفه که در شکل‌های (۱۴) و (۱۵) نمایش داده شده است، ایجاد کردیم. این نقشه‌ها میزان تئیمان و استفاده هر سلول برای سوختن را بیان می‌کند و به هر سلول عددی بین ۰ تا ۱ نسبت می‌دهد که بین گر تئیمان تئیمان سوختن و ۱ بین‌گر تئیمان و استفاده کامل سلول برای سوختن است. از این نقشه به‌عنوان یکی از پارامترهای تأثیرگذار در قوانین انتقال اتوماتی سلولی استفاده شد.

با توجه به اینکه پیاده‌سازی با استفاده از فیلتر همسایگی ۳×۳ دارای دقت بالایی نسبت به دو فیلتر همسایگی دیگر می‌باشد، برای مقایسه الگوریتم پیشنهادی از این فیلتر همسایگی کردم. اتوماتی سلولی نیز با همان ویژگی‌هایی که کار رفته در الگوریتم SIE استفاده شد. MOLA روشن‌گر سپری‌سازی گسترده آتش حاصل از اجرای الگوریتم اتوماتی سلولی

![نمودار]

Downloaded from jgit.kntu.ac.ir at 11:43 +0430 on Tuesday July 6th 2021 [DOI: 10.29252/jgit.5.3.99]
مقدمه

مطالعه گسترش آتش سوزی در انجام‌پذیری مبتنی بر میزان اتماتیک ... برخی پژوهشگران، مجددا سحرایان، آمین راعی

۱۱۷

جدول ۸: شاخص کلی و شاخص عامل نسبی حاشیه از مدل‌سازی با الگوریتم اتماتیک سلولی با به کارگیری روش تغییرات لجستیک، پایان

<table>
<thead>
<tr>
<th>نویسندگان</th>
<th>توان تغییرات مکانی (متر)</th>
<th>توان تغییرات مکانی (متر)</th>
<th>توان تغییرات مکانی (متر)</th>
<th>توان تغییرات مکانی (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۸۴۰</td>
<td>۸۸۳</td>
<td>۸۹۲</td>
<td>۹۱۷</td>
<td>۹۳۲</td>
</tr>
</tbody>
</table>

جدول ۹: شاخص کلی و شاخص عامل نسبی حاشیه از مدل‌سازی با الگوریتم اتماتیک سلولی با به کارگیری روش تغییرات لجستیک، پایان

<table>
<thead>
<tr>
<th>نویسندگان</th>
<th>توان تغییرات مکانی (متر)</th>
<th>توان تغییرات مکانی (متر)</th>
<th>توان تغییرات مکانی (متر)</th>
<th>توان تغییرات مکانی (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۲۶</td>
<td>۸۶۳</td>
<td>۸۶۲</td>
<td>۸۳۷</td>
<td>۸۲۱</td>
</tr>
</tbody>
</table>

شکل ۱۶: نقشه مدل‌سازی گسترش آتش حاشیه از اجرای الگوریتم اتماتیک سلولی با به کارگیری روش تغییرات لجستیک، پایان

شکل ۱۷: نقشه مدل‌سازی گسترش آتش حاشیه از اجرای الگوریتم اتماتیک سلولی با به کارگیری روش تغییرات لجستیک، پایان
۹ - نتیجه گیری

در این تحقیق سعید ابتدا فاکتورهای مؤثر بر آنتی‌سورهای جنگل گلن‌دان را شناسایی نماید. برای این منظور از روش رگرسیون وزن‌دار چندواژه‌ای (GWR) در حال ورود مکانی سه‌بعدی در ترکیب با الگوریتم زنتی استفاده شد. با توجه به بررسی‌های صورت گرفته، 8 فاکتور فاصله در مناطق مسکونی، جنگل خاک، کاربری زمین، ارتفاع، مقدار بار، جهت بار، حاصل دما و جهت بی‌галب باعث فاکتورهای مؤثر نمودار از حدود میانگین شدند. در ادامه، الگوریتم آنتی‌سورهای جنگل با استفاده از الگوریتم سلولی با کارگری روش مارکوف به همراه MOLA و فیلتر همسایگی کوکاردشست دقت مدلسازی به‌طور میانگین بالای نیز. هرچه توان تفکیک مکانی کوکاردشتر می‌شود، دقت الگوریتم یکپارچه می‌باشد. پیشینه دقت در مدلسازی مدلسازی یکپارچه می‌باشد.

با توجه به جدول‌های 6 و 7 و شکل‌های ۱۲ و ۲۳، ملاحظه می‌شود که برای الگوریتم اتماتیک سلولی با کارگری روش مارکوف به همراه MOLA، هرچه الگوریتم آنتی‌سورهای جنگل در این منطقه که در جدول‌های ۶ و ۷ و شکل‌های ۱۲ و ۲۳ آمده است، می‌توان به این نتیجه رسید که با استفاده از الگوریتم اتماتیک سلولی با کارگری روش MOLA، فیلتر همسایگی ۳×۳ دارای دقت و صحت بهتری نسبت به
سرای فیتله‌های همسایگی است. در این روش، به‌کارگیری توان تفکیک مکانی ۳۰ متر برای تاریخ ۲۴ آبان ۱۳۸۹ نسبت به سایر توان‌های تفکیک مکانی، نتیجه‌گیری‌های را ارائه می‌دهد. شاخص کایا، دقت کلی و شاخص عامل نسبی در این حالت به ترتیب برای ۸۸۸ و ۸۹ درصد، ۸۵ درصد و ۸۵ درصد است. بنابراین، برای تاریخ ۲۴ آبان ۱۳۸۹ نسبت به سایر توان‌های تفکیک مکانی، نتیجه‌گیری محاسباتی بیشتری ارائه می‌دهد. شاخص کایا، دقت کلی و شاخص عامل نسبی در این حالت به ترتیب برای ۸۸۸ و ۸۹ درصد، ۸۵ درصد و ۸۵ درصد است.

[۱] Y. Bergeron, S. Gauthier, M. Flannigan, and V. Kafka, “Fire regimes at the transition between mixed wood and coniferous boreal forest in Northwestern Quebec”, Ecology,

Modeling the spreading of forest fire based on a cellular automata using the markov chain and MOLA with a neighborhood filter

Parham Pahlavani *, Hamid Reza Sahraian 1, Amin Raei 3
1- Assistant professor at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Iran
2- MSc student of GIS at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Iran
3- PhD student of GIS at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Iran

Abstract

Nowadays, to reduce the damages and high costs of forest fire, there is a need for identifying the factors affecting forest fire, modeling the spread of the fire, as well as specifying the actions to extinguish forest fire. In this research, we tried to identify the biophysical and human factors affecting spread of the fire in a study area using the geographically weighted regression (GWR) integrated with a genetic algorithm. Subsequently, spread of the forest fire was modeled using the cellular automata (CA), markov chain, and multi-objective land allocation (MOLA) with various neighborhood filters for calibration of transition rules of the CA. Moreover, a combination of the CA and logistic regression was used to compare with the results of the method mentioned above. Results showed that for the fire that happened on the study area on November 17, 2010, the proposed CA algorithm using Markov chain and MOLA with a 3×3 neighborhood filter and 30 m pixel size is more precise than those of the other neighborhood filters and pixel sizes. In this case, the kappa index, the overall accuracy, and the relative operating characteristic (ROC) were equalled to 88.8 %, 95.1 %, and 89.0 %, respectively. Also, comparison of two proposed methods of this research indicated that the CA algorithm using the Markov chain and MOLA reached more precise and accurate results than those achieved by the CA algorithm using the logistic regression.

Key words: Spreading of Forest Fire, Geographically Weighted Regression, Cellular Automata, Markov Chain, MOLA, Logistic Regression

Correspondence Address: School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
Tel: 021-61114524.
Email: pahlavani@ut.ac.ir