کلید واژه‌ها: ربات پرنده، جایابی، پوشش، فضای برداری، بهینه‌سازی، الگوریتم چرخه آب.

چکیده
مطالعه جایابی حسگرها با پیشینه پوشش همواره به‌عنوان یکی از مراحل بی‌بایدگی توسعه زیرساخت‌های ارتباطی و مکانی مورد توجه می‌شود. پژوهشگران علم مهندسی بوده است در این زمینه به‌منظور کنترل جایابی حسگرها با پیشینه پوشش در محیط‌های سطحی برای برداری پراکنش می‌شود. بدین منظور، یک الگوریتم هندسی برای تشخیص نواحی تحت پوشش توسعه داده شده است. به‌منظور بیشینه‌سازی میزان پوشش حسگرها نیاز از الگوریتم بهینه‌سازی چرخه آب به‌هکی شده است. سپس به‌منظور پیشگیری از هدرگیری زودرس به‌منظور به‌هم و ارتباط کارایی و توان جستجوی الگوریتم در حل مسئله به‌طرادی و توسعه یک الگوریتم بهبودیافته چرخه آب با پرامترهای کنترل و عملکردی محاسبه‌ی کاربردی پرداخته شده است. با در نظر گرفتن چندین سازوکار به‌ین بی‌بایدگی مکانی مختلف، کارایی الگوریتم پیشنهادی در مقایسه با سایر روش‌ها از منظر میزان استحکام، زمان اجرای استاندارد و بهترین مقایسه‌ی پوشش، اجرای استاندارد، سرعت هدرگیری و امکان‌آوری و یکپارچگی بررسی گردید. ارزیابی و تحلیل نتایج نشان‌دهنده

اطلاعات اطلاعات

نشريه علمي پژوهشي مهندسي فناوري اطلاعات مكاني

سال پنجم، شماره پنجم، بهار 1397
Vol.5, No.5, Spring 2018

12-25

المپیک طالبین مهندسی مکانیک

لطفن: 09121903148
Email: fkarimipour@ut.ac.ir
وشژی علمی پژوهشی - مهندسی فناوری اطلاعات مکانی

1. مقدمه

با رشد روزافزون علم رباتیک، بعضاً بر چکارگیری، برنامه‌بری سیستم‌های و کنترل ربات‌ها و همچنین توسعه زیرساخت‌های نرم‌افزاری به‌منظور بهره‌گیری پرداز رابطه‌ها به یکی از موضوعات تحقیقاتی روز ندبی شده است.۱،۲ و ۳. یکی از راه‌های پایش و مرآقت از تأسیسات حساس همچنین تأثیرات مختلف و هم‌تیار ایران بهره‌گیری از حس‌گرهای متحرک ۴ در اطراف این تأسیسات است.۵،۶ اعمالی جهت و نتاج پس از وقوع حوادث، آمایش زندگی حیوانات، بررسی عامل‌های آشنایی فناش و با پایندگی بستری توزیع‌نما هرگونه دیگر از کاربردهای روزافزون این ربات‌ها هستند.۷ هر باری پرنده بوم‌پردازی تواند به‌عنوان یک سکوی حامل با یک یا چند حسگر به‌استناد در یک مکان دیگر نصب گردد. حس‌گرهای مختص بر روی ربات پرنده با توجه زاویه دید محدود خود توانسته قدر به پشم ۸ بخش خاصی از سطح قابل دید منطقه خواهند بود و میزان پوشش کل منطقه، می‌تواند از مجموع سراسر سطح تحت پوشش و مهم‌ترین قسمت‌های این سیستم باشد. این تایید برابر پایش جدایگر منطقه‌ای با کمترین تعادل ربات پرنده هر باله باید به فن مکانیکی دسته‌بندی کند که قادر به پوشش با پشتیاز از حس‌گرهای هدف خود باید. مقدار منطقه تنش کردن حسگر تحت تأثیر قدرت سپیدگی آن و وجود مواد محيطي‌ها محدود می‌شود. هر گونه حسگری مپاور در مناطقی تعبیه شوند که قادره به جمع‌آوری اطلاعات بستری از محیط اطراف خود باشند. اگرچه افزایش تعداد حسگرهای و محدوده‌های مکانیکی آنها باعث افزایش سطح پوشش ناحیه‌های می‌شود، ولی از نظر هزینه و امکانات

4 Central control station
5 Spatio-temporal
6 Wireless sensor network
به توسیع روشی برای محاسبه مستقیم مساحت تحت پوشش برای محیط های سه بعدی برداری دارد. به دیگری، این تحقیق می‌کوشد نمایش پوشش شبکه‌های مربوط به برای شبکه‌های هسته‌ای نوپایی ارائه دهد. این تحقیق در حالت‌های مختلف به صورت برداری در محاسبات مربوط به تخمین پوشش حسگرها

شکل 1: توصیف سازاری‌های بایانی ریت‌های پرند برای استقرار در موقعیت بهینه و محاسبه پوشش شبکه‌های در یک فضای سه بعدی

تاکنون این مسئله با مدل‌سازی و روش‌های مطرح در این تحقیق حل نشده است. با این حال، تحقیقات پیرامون حسگرهای ثابت با حرکات جزئی و همجنس حسگرهای متغیر در فضاهای دوبعدی انجام شده است [9]. در این زمینه، اگر و همکاران از الگوریتم زنتیک برای جایی برای راه‌های دوبعدی حساسیت و ارتباط جزئی به بهاره‌گیری کردن [10]. همچنین، در تحقیق دیگری با استفاده از الگوریتم حریضهان، پوشش سراسری شبکه‌های دوبعدی با گره‌های متحرک کنترل شونده تخمین زده شد [11]. در فضاهای ۳ بعدی، اگر و همکاران پوشش بهینه‌ی حسگرهای دو بعدی با استفاده از الگوریتم جایی تصادفی محاسبه کرده‌اند [12]. اگر با بانک کردن گری بر روی توزیع داده شده باید حسگرها را به طور بالا و حسگرهای دو بعدی با استفاده از الگوریتم سلولی مسئله جایی کرد. نیاز به جایی تعداد بالای حسگرها در این

[1] Zhu

[۱۱] Zhu
انجام شده است.
بر اساس مطالعات پیشین، یکی از روش‌های کارا و موزون برای حل مسائل چنینی و پوشش حساس‌های استفاده از الگوریتم‌های فرآیندی‌پژوهشی می‌باشد. با افزایش شمار حساس‌ها در یک شبکه، حساسیت سطح پوشش افزایش خواهد یافت.
اما از سوی دیگر، به‌چسبنگی محل سلوله نیز باید
خواهد شد. از منظر کاربردی نیز، افزایش عداد حساس‌ها رویکرد سیستم‌پردازی، زمان‌بندی، و غیره‌سمتی است.
از این روی، یکی از روش‌های فراگیر، سریع و کارای حالت سلوئی این تحقیق و حساس‌های منحکر
به‌گیری از الگوریتم‌های فاقد اکتشافی تک‌هدفه
افزایش از عددهای ابتدا بوده است. تحقیقات فراوانی در
زمینه بررسی، مقایسه و توجه این الگوریتم‌ها برای
حل این سلوله انجام شده است. در این زمینه، از
الگوریتم زنبور عسل مصنوعی (ABC) برای
پیش‌سنجش حساس‌های استفاده شده است.[16]. این از
مدل شرکت احتمالی برای حساس‌ها استفاده نمودند.

*ژیسترهای حساس‌های هم‌چنین دوعددی با مدل پوشش
احتمالی سردی ارزیابی قرار گرفته است.[16] یعنی همکاران الگوریتم زنبور عسل (ABC) با بهبود داده و
عملاکر این بر دار از حل محل سلوله سنجیدند.[17].
اما این تحقیق مشابه بسایری از مقالات مشابه,
منسجم در فضای دو بعدی و در ساده‌ترین حالت
سلوله‌ای شده است. این رویکرد نسیا ناپایکن
نیاز‌های حساس‌های سنتی سازی به‌صرفه واقعیت باشد.
اما این الگوریتم نوعی روش مشابهی از مقالات مشابه,
ارتباط شده است. این مدل تحقیق احتمالی جدید
بررسی شده و نتایج آن در انتها بوده و داده شده است.

1 Artificial bee colony
2 Genetic algorithm
3 Digital surface model
به‌عنوان یک الگوریتم جذاب و توانمند، الگوریتم گریژه‌گر (Grey wolf optimizer - GWO) را می‌توان در حل مسائل بهینه‌سازی به‌کار بردارد. این الگوریتم بر اساس مدل حیات و جستجوی گریجه‌ها ایجاد شده است. به‌عنوان یک الگوریتم بهینه‌سازی، الگوریتم گریژه‌گر برای حل مسائل بهینه‌سازی و سایر مسائل بهینه‌سازی در حوزه‌های مختلفی از جمله مهندسی و شیمی و فیزیک و علوم کامپیوتر به‌کار می‌رود.

1) الگوریتم گریژه‌گر (Grey wolf optimizer - GWO)
2) الگوریتم جاگیری و پوشش (P ـ S)
3) الگوریتم آزموزشی (GA)
4) الگوریتم انتخابی (ICA)
5) الگوریتم محدّدینی (Binary)
6) الگوریتم بهینه‌سازی (Probable)

References:
3 Maximum coverage sensor deployment problem
4 Water cycle optimization algorithm
5 Grey wolf optimizer
6 Imperialist competitive algorithm

[DOI: 10.29252/jit.6.1.15]
الگویی در پرداخته شده است. در تابع (۱) که باید این فرمول از ضرر اصلی سه نقطه‌ای نخست

\[N = \text{cross} (v_2 - v_1, v_3 - v_1) \]

به‌صورت خلاصه مسأله‌کت اصلی و توایه‌ای به بدين شرح است:

- ارائه رویکرد جدید برای پژوهش میانگین هدف بر اساس مدل‌های برداری و سه‌بعدی (بخش ۳)
- توصیف گام‌های اصلی و ساختار الگویی به‌وسیله چرخه آپ برای

جلد سوم نوشته داده شده (بخش ۱)

- ارزیابی کارایی الگویی پیش‌پردازش در حل مسائل مطالعه، مقایسه با الگویی استاندارد و دیگر الگویی‌ها

بنا بر این، مدل پژوهشی و روش‌های جدیدی به سوالات اصلی نیاز می‌بندند:

1. چگونه می‌توان میزان پوشه را در محیط‌های برداری مدل‌سازی کرد؟

2. چگونه می‌توان پیشینه پوشه مجموعه‌ای از ربات‌های برند را بر اساس این مدل محاسبه کرد؟

3. در چه موقع و هنگامی، این ربات‌ها می‌توانند به‌ین‌سان پوشه را رصد کنند؟

4. چگونه بهبود ربات‌ها و به‌منظور دستیابی به حداقل مقدار پوشه چگونه محاسبه می‌شود؟

بستگی به جایی بهبودی است که ساختار این پژوهش در بایدمی‌های سه‌بعدی برداری تشخیص چرخه‌است. در بخش ۲، به‌تعیین راه حل و ضایع مستقیم طراحی‌شده به‌وسیله سه‌بعدی سه‌بعدی برداری به‌وسیله سه‌بعدی برداری شده است. در بخش ۴ به توصیف گام‌های اصلی و ساختار الگویی به‌وسیله چرخه آپ برای معرفی مدل پژوهشی و ارائه این الگویی پرداخته شده است. در بخش ۵ به تحلیل نتایج الگویی‌ها مختلف در حین این مسئله برداخته شده است. در نهایت، در بخش ۶ نتیجه‌گیری‌ها و پیشنهاداتی برای کارهای آتی ارائه شده است.
چندضلعی استفاده شده است. برای محاسبه مؤلفه‌های بردار نرمال \(\mathbf{N} \) در چندضلعی‌های غیر محض، می‌توان از فرمول بلوئ و نیویور در رابطه (2) استفاده نمود [41]:

\[
\begin{align*}
N_x &= \sum_{i=1}^{n} (y_i - y_{next(i)}) (z_i + z_{next(i)}) \\
N_y &= \sum_{i=1}^{n} (z_i - z_{next(i)}) (x_i + x_{next(i)}) \\
N_z &= \sum_{i=1}^{n} (x_i - x_{next(i)}) (y_i + y_{next(i)})
\end{align*}
\]

که در این رابطه، \(n \) عدد نقاط چندضلعی، \(i \) و \(next(i) \) دو یکتار نقطه‌ای (\(x_i, y_i, z_i \)) و \(y_{next(i)}, z_{next(i)} \) نقاط بعدی از جهت انتخاب، اگر \(N_x < 0 \) باشد، چندضلعی پشت به حسگر بوده و حذف می‌شود.

شکل ۲- حذف چندضلعی‌های پشت صفحه

۲-۲ حذف چندضلعی‌های پشت صفحه برپاسیکتو

با توجه به بهره‌دار بودن حسگرها، چندضلعی‌های واقع در پشت صفحه برپاسیکتو حذف می‌شوند. با توجه به شکل (۳)، سایر حسگرها رابدارهای \(e_n \) که جهت آن‌ها از نقاط چندضلعی به سمت

\[1\] Blinn & Newell
\[2\] Non planar
تشریح علمی پژوهشی - مهندسی فنائی اطلاعات مکانی
سال ششم ۷ شماره نخست ۶ بهار ۱۳۹۷

۲- تصویر چندضلعی‌ها بر روی صفحه
برسپکتیو و برهم‌پی آن‌ها
در این مرحله، به حذف چندضلعی‌ها به کلیت دیگر چندضلعی‌ها از دید حسگر نهان شده اند. برداخته می‌شود. بر این اساس، چندضلعی‌های مورد تأیید در مراحل قبل با هندسه برسپکتیو ی بر روی صفحه برسپکتیو تصویر می‌شوند [۴۲].

۱ Perspective geometry
نواحی قابل دید این چندضلعی، به کمک تقاطع آنها با دایره پرسکینو استخراج می‌شوند.
(شکل ۶):
نحوه علمی پژوهشی - مهندسی فنونی اطلاعات مکانی
شامل سال ششم نشره تکست ۱۳۹۷

مطالعاتی نشان می‌دهد که مساحت آن برای باعث
۱۴۳۳/۷۲۹

شکل ۲: (الف) تبدیل چندضلعی‌ها به مثلث‌های تکیه‌گاهی در صفحه سه‌بعدی (ب) انتقال مثلث‌ها

شکل ۸: (الف) چندضلعی‌هایی که روی یک حسگر مستقیم و در محدوده‌ی فصل‌های عملکرد آن قرار گرفته‌اند;
(ب) دید پرسپکتیو چندضلعی‌های قابل دید توسط حسگر;
(ج) چندضلعی‌های سه‌بعدی قابل دید توسط حسگر در
فضای سه‌بعدی

این رویکرد قادر است ساخت چندضلعی‌های کاربردی
ساخته‌شده را نیز در محیط‌های پیشرفته تهیه کند.
در حالی که، این امر در رابطه با رویکرد
محیط‌های پیشرفته در مدل‌های محدود با انجام نمی‌شود.
برای بررسی مدل‌های پیشرفته مسئله
برداخته شده است.

MCSDP

۳- ساختار مسئله

در این بخش، به نشانه‌زنی ساختار مسئله به‌هم‌سازی
الگریتمی جذبی برای تهیه وارایتی و تغییر استاتیک
علي انصاری، فردی کریمی‌پور

اطلاعات پویشی را به‌صورت مستقیم به‌واحد برداشته در استادگاه داده‌ها و کنترل ارسال می‌نماید. از این رو، نیاز به تبدیل اطلاعات با دیگر حسگرها و احاطه قید حفظ ارتباط بین حسگرها لیست و هر حسگر به‌صورت مستقل مجاز به جایگزینی و یا بیشینگه‌سازی سطح تحت پوشش خود از عوارض است. همچنین فرض بر این است که میزان انرژی مصرفی حسگرها در طی اجرای آموزشی پایه و پوشش منطقه‌های هدف کلی باشد. نتایج احتمال جهت حسگر نوار پرداز نیز بر اساس عملکرد واقعی گزارش‌های که در رابطه تحت‌الحمای حسگرها در محفظه‌های مبهم رخ می‌دهد، به رابطه (۴) می‌باشد:

\[P_i = 0.5 \times \omega \times [\cos(\alpha - \theta) + 1] \]

روابط (۴)

که پارامتر \(\omega \) و یکپارامتر \(\theta \) از پارامترهای پیش‌گیری حسگر است.

\[\text{زاویه بازی با زاویه عملکرد حسگر و} \theta \]

زاویه \(\alpha \) برای عملکرد حسگر و هدف با بردار جهت انتظاری سایر حسگرها در محفظه‌های مبهم رخ می‌دهد. این افزایش تا گسترش آن تا تغییر جهت در هر نقطه است. بر سه‌گانه رابطه (۷)

زاویه به‌شته بسیار باید در محدوده زیر باشد:

\[0 \leq i

روابط (۷)

\[g_i = h_{safe} - \min (z_i - z_{j}, (x_i, y_i, z_i) \geq 0) \]

که در رابطه (۷)، به‌شته بسیار زاویه حسگر افکن در هر موقوفیت است که بر منابع، رابطه (۷) به رافترین بیشینه اضافه به جمله (۷) تبدیل می‌گردد ایده‌گران و استادگاه حسگر ربات‌ها و اندیشه‌های مبهم حسگر باید در محدوده زیر باشد:

\[g_i = \max (\phi_i - \phi_{\max}) \leq 0, \quad i = 0, 1, \ldots, n - 1 \]

روابط (۷)

\[\text{که به‌شته بسیار بنا به آن رابطه (۷)، به‌شته بسیار رابطه (۷) به رافترین بیشینه اضافه به جمله (۷) تبدیل می‌گردد ایده‌گران و استادگاه حسگر ربات‌ها و اندیشه‌های مبهم حسگر باید در محدوده زیر باشد:} \]

\[(x_i - x_j)^2 + (y_i - y_j)^2)^{1/2} \]

تغییر گاهی درون‌پایه با برداشت حسگر درون‌پایه و انتخاب شود که درون‌پایه حسگر قرار گرفت، موقوفیت یافته‌ای جدید حسگر به برداشت حسگر می‌خواهد. این رابطه با رابطه (۷) همراه است. این افزایش تا گسترش آن تا تغییر جهت در هر نقطه است. بر سه‌گانه رابطه (۷)

\[g_i = \max (\phi_i - \phi_{\max}) \leq 0, \quad i = 0, 1, \ldots, n - 1 \]

روابط (۷)

\[\text{که به‌شته بسیار بنا به آن رابطه (۷)، به‌شته بسیار رابطه (۷) به رافترین بیشینه اضافه به جمله (۷) تبدیل می‌گردد ایده‌گران و استادگاه حسگر ربات‌ها و اندیشه‌های مبهم حسگر باید در محدوده زیر باشد:} \]

\[(x_i - x_j)^2 + (y_i - y_j)^2)^{1/2} \]

تغییر گاهی درون‌پایه با برداشت حسگر درون‌پایه و انتخاب شود که درون‌پایه حسگر قرار گرفت، موقوفیت یافته‌ای جدید حسگر به برداشت حسگر می‌خواهد. این رابطه با رابطه (۷) همراه است. این افزایش تا گسترش آن تا تغییر جهت در هر نقطه است. بر سه‌گانه رابطه (۷)

\[g_i = \max (\phi_i - \phi_{\max}) \leq 0, \quad i = 0, 1, \ldots, n - 1 \]

روابط (۷)

\[\text{که به‌شته بسیار بنا به آن رابطه (۷)، به‌شته بسیار رابطه (۷) به رافترین بیشینه اضافه به جمله (۷) تبدیل می‌گردد ایده‌گران و استادگاه حسگر ربات‌ها و اندیشه‌های مبهم حسگر باید در محدوده زیر باشد:} \]

\[(x_i - x_j)^2 + (y_i - y_j)^2)^{1/2} \]

تغییر گاهی درون‌پایه با برداشت حسگر درون‌پایه و انتخاب شود که درون‌پایه حسگر قرار گرفت، موقوفیت یافته‌ای جدید حسگر به برداشت حسگر می‌خواهد. این رابطه با رابطه (۷) همراه است. این افزایش تا گسترش آن تا تغییر جهت در هر نقطه است. بر سه‌گانه رابطه (۷)

\[g_i = \max (\phi_i - \phi_{\max}) \leq 0, \quad i = 0, 1, \ldots, n - 1 \]

روابط (۷)

\[\text{که به‌شته بسیار بنا به آن رابطه (۷)، به‌شته بسیار رابطه (۷) به رافترین بیشینه اضافه به جمله (۷) تبدیل می‌گردد ایده‌گران و استادگاه حسگر ربات‌ها و اندیشه‌های مبهم حسگر باید در محدوده زیر باشد:} \]

\[(x_i - x_j)^2 + (y_i - y_j)^2)^{1/2} \]

تغییر گاهی درون‌پایه با برداشت حسگر درون‌پایه و انتخاب شود که درون‌پایه حسگر قرار گرفت، موقوفیت یافته‌ای جدید حسگر به برداشت حسگر می‌خواهد. این رابطه با رابطه (۷) همراه است. این افزایش تا گسترش آن تا تغییر جهت در هر نقطه است. بر سه‌گانه رابطه (۷)
باتش افتراقی قطعیت‌های رفتاری منطقه‌ی مشو و همچنین از گراف‌های پیامت بخش‌هایی از حسگرها، از پوشش منطقه‌ی کاسته‌نما شد. هر چه k بیشتر باشد، قطعیت پوشش منطقه‌ی بالاتری می‌روید. برای رسیدن به این هدف، می‌توان تعداد حسگرها را با این موج افتراقی هزینه عملیات خواهد شد. تابع هدف در رابطه با

این قید، مطلق رابطه (9) عبارت است از بیشینه‌سازی

نیست متساوی یک منطقه‌ای که توسط k حسگر پوشش می‌یابد به حداکثر مساوی که حسگرها در این حالت قادر به پوشش آن هستند، برای تبدیل مسئله به کمینه‌سازی نسبت نظیر از کل مسئول مسحل کسر شده است. از این رو، راه‌حل‌های مسئله‌ی بهینه‌سازی سراسری بر اساس این مقدار برای می‌شود.

رابطه (9)

$\minimize \sum_{i=1}^{m} h_{i} + \sum_{k=1}^{K} \sum_{n=1}^{N_{k}} S_{i,k,n}$

subject to $g_{k}, g_{p} \geq 0,$

$H_{ij} = 0$

-2 الگوریتم بهینه‌سازی جرخه‌آب در حل مسئله

MCSDP

الگوریتم بهینه‌سازی جرخه‌آب یک روش بهینه‌سازی فیزیکی بینای است که در سال 2012 به منظور حل مسئله بهینه‌سازی مقدار مطلوب سازه است و از عملکرد مستحکمی در حل مسائل مهندسی برخوردار است (24). این الگوریتم بر مبنای تجزیه شرایط یک از در سطح زمین و جاری آب‌های آب‌ها به سمت رو به رو روده و درای شکل گرفته است. جمعیت اولیه الگوریتم شامل مجموعه‌ای تصادفی از شرایط‌های آبی، روده و درای است. در این الگوریتم بهترین پایه مسئله (بهینه سراسری) به‌عنوان دریا انتخاب شده و سایر پاسخ‌ها بر حسب برترین به‌عنوان روده و شرایط‌ها انتخاب می‌شود (48). سپس، تعدادی شرایط به

1 Stream
۴. محاسبه جریان حر و دریا (وضعیت بهترین حسگر بایشترین سطح تحت بوشش) بر اساس رابطه (۱۴ و ۱۵): \[C_n = \text{Cost}_n - \text{Cost}_{N_{\text{pop}}}, \quad n = 1, 2, \ldots, N_{\text{pop}} \] \[N_{\text{stream}} = \text{round} \left(\frac{C_n}{\sum_{i=1}^{N_{\text{pop}}} C_n} \times N_{\text{stream}} \right), \quad n = 1, 2, \ldots, N_{\text{pop}} \]

که در این رابطه، تعداد جریان‌های را نشان می‌دهد.
۵. لیست جریان‌های حر و دریا بر اساس رابطه (۱۶ و ۱۷)، به رودها و دریا جاری می‌شوند:
\[X_{\text{stream}}(t+1) = X_{\text{stream}}(t) + r_1 \otimes K \otimes (X_{\text{river}}(t) - X_{\text{stream}}(t)) \]
\[X_{\text{stream}}(t+1) = X_{\text{stream}}(t) + r_2 \otimes K \otimes (X_{\text{sea}}(t) - X_{\text{stream}}(t)) \]

جهان مختلف به سمت نقطه بهتر حرکت کنند. نحوه حرکت جریان‌ها در شکل (۹) نیز قابل مشاهده است.

کره در این رابطه، ضرب عبارت‌ها از نوع عضو به رودها است. دو متغیر تصادفی در پایه (۱۰۰) هستند و یک ثابت است که توسط طراح مدل طراحی شده است.

۶. به دریا جاری رودها بر اساس رابطه (۱۸):
\[X_{\text{river}}(t+1) = X_{\text{river}}(t) + r_1 \otimes K \otimes (X_{\text{sea}}(t) - X_{\text{river}}(t)) \]

۷. جایگزینی رود بششان که اهمیت کمتری (پوشش به‌طوری) داشته باشد.

شکل: نحوه جریان جریان‌های حر و دریا به دریا
گام 8: یک چارچوب روش به دنبالی که هزینه بیشتری (پوشش کمتری) داشته باشد.

گام 9: برش نیروی تبخیر برای مسائل نامیقی در صورتی که $X_{\text{sea}} - X_{\text{stream}} < \mu_d$ باشد و یا عدد تصادفی r_d از 0.1 کمتر باشد، فرآیند بارش آغاز می‌شود. در این رابطه، d_{max} یک پارامتر کنترلی برای الگوریتم است که در مسائل مقدی برای 0.5 و در مسائل نامیقی برای 0.10 انتخاب می‌شود.

گام 10: پس از بررسی شرایط تبخیر، بارش به صورت رابطه (19) با پایین‌یافتن خط (وضعیت‌های نامیق باری) به همراه با صورت الگوریتم مقدی می‌شود. سپس تابع هدف مسئله بر اساس رابطه (13) تعیین می‌شود.

بنابراین الگوریتم در مرحله راهحل‌های تصادفی اولیه را بر اساس روابط (16) و (18) به سمت باشخه‌های پایین (وضعیت‌های ممکن حسگرهای با پوشش بیشتر) حرکت می‌دهد. در این مطالعه، مطالعه بیشتر در مورد نحوه کارگیری این الگوریتم در حل مسائل بهینه‌سازی به مرجع [104] مراجعه شود.

شکل 10: مراحل اجرای الگوریتم جرخه آب
الکوریومین جدید و کارا برای جایابی و پوشش سمعدی...؟

و به عده عملکرد الگوریتم تنزیب این عملکرد را از دست نمی‌دهند.

راهکار دیگری که می‌تواند موجب بهبود عملکرد الگوریتم جرما بوده است که برخی پارامترهای نابودی و سیاستگذاری الگوریتم که مقدار آنها توسط کاربر تغییر نمی‌کند (نیاز پارامتر K)، به‌صورت دینامیکی و بر مبنای یک معادله نزولی در مسیر پیشروی الگوریتم کاهش یافته است. (25) این ضرایب کاهشی دینامیکی می‌تواند این دلیل مؤثر باشد که موقعیت مهم تعادل در مسیر پیشروی دیگری را ممکن می‌کند که می‌تواند الگوریتمی که قدرت مسیر پیشروی را کاهش دهد می‌تواند به‌صورت دینامیکی کاهشی کد قادر به برقراری تعادل مناسبی بین این دو ویژگی نیست. برای مثال، در تکرارهای پایانی الگوریتم توانایی مستعد واحدی بسته به پارامترهای نسبتی انجام چنین روش در تکرارهای نهایی نیاز دارد، متمرکز برند پاسخ‌ها به سمت ناحیه‌ای احتمالی و قوی به‌کمک سراسری ایست. در الگوریتم جرما اب، در تکرارهای پایانی نیاز به پارش و جریان‌های جدید کمتر می‌شود؛ زیرا نواحی مستعد وجود دارند با دقت و پایدار اطراف این نواحی با دقت (تمرکز) بیشتری جستجو گردید. بر این اساس، در نخست نیمه‌های این مقاله شرایط و روش‌های براساس معادلات دینامیکی در رابطه (۲۲۷) و (۲۴) به سمت دریا حرکت می‌کند.

\[X_{\text{Stream}}(t + 1) = X_{\text{Stream}}(t) + K(t) \otimes (X_{\text{Sea}}(t) - X_{\text{Stream}}(t)) \]

\[X_{\text{Stream}}(t + 1) = X_{\text{Stream}}(t) + K(t) \otimes (X_{\text{River}}(t) - X_{\text{Stream}}(t)) \]

\[X_{\text{River}}(t + 1) = X_{\text{River}}(t) + K(t) \otimes (X_{\text{Sea}}(t) - X_{\text{River}}(t)) \]

که در این روابط بالا \(K(t) \) تابعی نزولی و آتش‌سوز است که بر اساس رابطه (۲۵) تعیین می‌شود:

\[K(t) = (K_r - K_s) \times \left(\frac{t}{t_{\text{max}}} \right) \times UF(t), \]

در الگوریتم استاندارد جرما آب، نیمه‌های فوق‌العاده به نظر ورودی و بیانی که مقدار و اندیشه عملکرد خطری کاملاً طراحی شده است که مقدار ان‌همجوی الگوریتم اصلی در زاده (۱۲۷) فاقد دارد. نکته تعیین این معیارها در مسیر می‌شانه رابطه (۱۰۰) MCDSP
نتیجه‌گیری پژوهشی - مهندسی فناوری اطلاعات مکانیک
سال ششم • شماره نخست • بهار ۱۳۹۷

و مراحل مطرح در بخش قبل بوده است. همچنین به‌شتهای تکرارهای الف‌گونه i تعداد تکرارهای جاری و
بنادر تابع مولت‌الگویی آشوبی در هر تکرار UF (t)
است. در اصلاح دگرگونه، پارامتر نابیابانی
با تکرارهای UF (t)
0.5
0.5
این امر
است. با این مقدار
می‌توان با میان‌بیانش یک گروه در میان‌بیانش بی‌پیش‌بینی اطمینان مسئله می‌گردید. در این شرایط، شرط تبخیر و
یافته در جدول ۶۸ می‌شود:
در برای کازاریا غیابی انتهایی و
از این رابطه، در دستگاه‌های انیمیایی
خاطی با شروع از ۰/۸ به ۱/۸ کاهش می‌یابد. در مورد
نحوه اجرای شکل گروهی پیشنهادی در شکل (۲۲) قابل مشاهده است.

۵- ارزیابی و تحلیل نتایج
در این بخش، کارایی گروهی پیشنهادی بر اساس
میانگین زمان اجرا در حالت مسئله مذکور،
mیانگین سرعت همگامی به باشگاه‌های بهینه،
به‌تغییر مقدار بخش، میانگین مقدار بخش، و
انحراف از می‌مار (دقت) مقدار بخش
باتک‌های جمعیت مسئله زننده گروهی
که به‌عنوان گروهی پیش‌بینی مسئله PSO و
GA و ICA [۶۳] در تحقیقات مرتبط شناخته‌شده بود، بررسی
مقایسه ای برای گرایشهای ابتدایی
پارامترهای اولیه مسئله و گروهی پیش‌بینی
سه‌ی به بیان شرط پایان گروهی پیش‌بینی،
استفاده ملی و همچنین پایداری و میانگین
ابزارهای ارزیابی گروهی با نوع آزمون اماری به کار
گرفته شده برای تشخیص اختلافات مسئله‌گروهی از
مقدار می‌باشد. برای بررسی
تأثیر قیوی مکانیبی مختلف بر کارایی گروهی پیش‌بینی و
تبلیغ
میزان انعطاف‌پذیری آن‌ها نسبت به این قیوی،
چهار حالت از سفارش‌های موجود برای مسئله حاضر
در نظر گرفته شده است.

\[X_{\text{new}}(t) = \begin{cases}
0 & 0 \leq x_i < P \\
- \frac{x_i - P}{0.5 - P} & 0.5 \leq x_i < 0.5 \\
\frac{x_i - 1 + P}{0.5 - P} & 0.5 \leq x_i < 1 - P \\
\frac{1 - x_i}{1 - 1} & 1 - 1 \leq x_i < 1
\end{cases} \]

که در این رابطه x_i مقداری در بین واحد و P پارامتری
کنترل‌شونده است که براساس ۳۵
به‌خودی انتخاب می‌شود.
شکل (11) نمایان‌گیری در طی ۵۰۰ نکار و با
۵۰۰ نکار یافته بخصوص را در طی ۵۰۰ نکار و با
شروط از مقدار اولیه ۷ نشان می‌دهد.

1. Piecewise map
به منظور انجام این آزمایش‌ها، پارامترها و داده‌های مربوط مدل MSFD پذیرفته شده است. مقدمه‌ی الحاقی که در مورد پارامترهای خاص این مدل نشان می‌دهد، و از آن‌ها، می‌تواند به سه‌گروه کل گروه‌ها تقسیم گردد:

- گروه پارامترهای اولیه: پارامترهایی که در مدل بایستی بررسی شوند.
- گروه پارامترهای دوم: پارامترهایی که بر پایه نتایج پارامترهای اولیه تعیین می‌شوند.
- گروه پارامترهای سوم: پارامترهایی که بر پایه نتایج پارامترهای دوم تعیین می‌شوند.

اگر از پارامترهای اولیه وارد شده باشند، مدل مناسب‌ترهایی، که توسط پارامترهای اولیه تعیین می‌شوند، به صورت متحمله و به کار می‌آیند. اگر نه، مدل مناسب‌ترهایی که توسط پارامترهای دوم تعیین می‌شوند، به کار می‌آیند. اگر نه، مدل مناسب‌ترهایی که توسط پارامترهای سوم تعیین می‌شوند، به کار می‌آیند. اگر نه، مدل مناسب‌ترهایی که توسط پارامترهای اولیه تعیین می‌شوند، به کار می‌آیند. اگر نه، مدل مناسب‌ترهایی که توسط پارامترهای دوم تعیین می‌شوند، به کار می‌آیند. اگر نه، مدل مناسب‌ترهایی که توسط پارامترهای سوم تعیین می‌شوند، به کار می‌آیند.
شیوه علمی پژوهشی - مهندسی فناوری اطلاعات مکانیک
سال ششم • شماره نخست • بهار 1397

با بهره‌گیری از تحلیل تاگوچی ۱، مناسب‌ترین مقادیر آغازین برای پارامترهای الگوریتم‌ها انتخاب شده است که علت این‌که در صفحات از ذکر جدول‌ها به خودداری شده است. در پایان تحلیل تاگوچی، بهترین تنظیم‌های الگوریتم‌ها در حل مسئله بافت شده. در الگوریتم‌زنی‌کن معمولاً انتخاب مناسب‌ترین جمعیت اولیه ۵۰ (عدد بردارهای وضعتی) است. اگر ریبان ۱۷ باشد، حالت ابتدایی الگوریتم استفاده شده است. در این تحقیق نیز از ساختاری مشابه استفاده شده است.

شیوه پایا تمام الگوریتم‌ها بر اساس بی‌کارگری هرمند چندین مهارت لازم شده است. در شیوه بازی که سرعت بهبود بیشتر راه‌پیما فاقد فاقد راه‌پیما در تکرارهای پیاپی کمتر از یک‌هزار بسته یا به تاکیدکردنی کمتر از یک‌هزار بسته، شیوه تاکیدکردنی بسیار ناپایدار بوده است. در این اساس، شیوه کد شرط ترکیبی نمایش تکمیلی می‌تواند به صورت شکل (۱۴) طراحی و برای ارزیابی روش‌های پایدارسازی شده.

پیمانکاری به کار گرفته شود.

Wang

1 Taguchi

2 Wang
if the average improvement of best(i) is below 0.001
for \(i = 1:500 \) generations,
check if maximum distance (best(i)-worst(i)) < 0.001
break and return \{ best, mean, worst, std, time \}
plot the convergence curve and display the found sensors
else if the iteration < 500, continue
ب‌منظور تحلیل و مقایسه بر‌تری آماری نتایج الگوریتم
پیش‌نهادی نسبت به الگوریتم‌های مورد مقایسه،
ازمون‌آموزی و WCA1 در سطح اطمینان 95 درصد
ارجا شده است. این ازمون‌آموزی نتایج‌ترین به‌منظور
بررسی همانندی دو نمونه وابسته با مقدار رتبه‌ای
استفاده می‌شود. در این ازمن‌آموزی، اجراهای اخلاقی
رتبه‌ها در نظیر گرفته می‌شود. از این رو، می‌توان
جویانه‌های منطقی‌تری برای ساختن مشاهده کرد.

بر اساس بهترین مقادیر بوشی در جدول (۳)
مشاهده می‌شود که نتایج الگوریتم پیش‌نهادی از
دیدگاه آماری، در همه موارد، دارای اختلاف معنی‌دار
نسبت به دیگر الگوریتم‌های مورد مقایسه بوده است.
در مجموع ۵۰ اجراه مستقل، CAQ قادر به بوشی
پیش‌نهادی ۷۱ درصدی از مناطق بوشی در مجموع
۱۲۵/۵۵ تای‌های نتایج را بهترین رتبه و با انحراف از
میان ۱/۲۳ محسوب می‌نمود است. این در حالی است
که کارایی الگوریتم‌های بوشی با توجه به مقادیر انحراف از
WCA که کارایی الگوریتم CAQ با توجه به مقادیر انحراف از
WCA بهترین رتبه و تنها بترین الگوریتم بوده است. استحکام
محاسباتی الگوریتم از رتبه‌شماره‌ی رتبه‌ی اول
رسیده است. برتری نتایج به‌دست‌آمده به‌دلیل به‌هویت
توان الگوریتم در پرداختن سایر پاسخ‌های جدید در
فضای حضوره با کمک اکتیبیک تکثیبی کاملاً است.
به‌وجود اصل‌العمل با عمل‌آمده در علل مختلف
روش وجدای بر نظر با نمونه‌سازی برجسته می‌باشد
نواحی دردخته و با تگرارات بیشتر با موفقیت به‌سمت
منتظر‌سازی پاسخ‌ها پیش‌رفته است.

نتایج آماری الگوریتم‌های مختلف بر اساس میزان
بهترین مشاهده، انحراف از منحنی میان‌برای بوشی
به‌دست‌آمده به‌هر دو نتایج آماری، زمان‌آموز در
رنگ موفقیت الگوریتم‌ها در جدول های (۲۹، ۴۹ و ۵۰)
قابل مشاهده است. در این جدول‌ها مقادیر هر ستون
بانک‌ها عملکرد الگوریتم مطرح در آن سطوح بر اساس

1 Wilcoxon signed ranks test
جدول ۲: بهترین، میانگین و انحراف از معیار مقادیر پوشش به دست آمده در مجموع ۵۰ اجرا و زمان محاسبات و نرخ موفقیت الگوریتم‌ها در حالت مسائله نمونه ۱ به همراه نتایج آزمون آماری و رتبه الگوریتم‌ها

<table>
<thead>
<tr>
<th></th>
<th>GWO</th>
<th>PSO</th>
<th>GA</th>
<th>ICA</th>
<th>WCA</th>
<th>MWCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>مسئله معیار پوشش</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بهترین</td>
<td>۶۷۷</td>
<td>۴۹۷</td>
<td>۵۸۴</td>
<td>۴۶۶</td>
<td>۴۷۵</td>
<td>۷۱۷</td>
</tr>
<tr>
<td>میانگین</td>
<td>۶۱۷</td>
<td>۴۹۷</td>
<td>۵۴۷</td>
<td>۴۳۸</td>
<td>۵۵۳</td>
<td>۶۵۵</td>
</tr>
<tr>
<td>انحراف از معیار</td>
<td>۱۹۸۵</td>
<td>۲.۸۵۵</td>
<td>۳.۲۳۸</td>
<td>۲.۴۰۵</td>
<td>۳.۱۸۵</td>
<td>۲.۳۳۸</td>
</tr>
<tr>
<td>زمان (ثانیه)</td>
<td>۱۵۶.۸۵۰</td>
<td>۱۵۶.۹۲۰</td>
<td>۱۵۷.۰۵۵</td>
<td>۱۵۷.۱۲۸</td>
<td>۱۵۷.۱۲۸</td>
<td>۱۵۷.۱۲۸</td>
</tr>
<tr>
<td>نرخ موفقیت</td>
<td>۶۵۱</td>
<td>۶۲۴</td>
<td>۶۴۷</td>
<td>۵۴۷</td>
<td>۴۷۵</td>
<td>۷۱۷</td>
</tr>
<tr>
<td>آزمون آماری</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>/</td>
</tr>
</tbody>
</table>

جدول ۳: بهترین، میانگین و انحراف از معیار مقادیر پوشش به دست آمده در مجموع ۵۰ اجرا و زمان محاسبات و نرخ موفقیت الگوریتم‌ها در حالت مسائله نمونه ۲ به همراه نتایج آزمون آماری و رتبه الگوریتم‌ها

<table>
<thead>
<tr>
<th></th>
<th>GWO</th>
<th>PSO</th>
<th>GA</th>
<th>ICA</th>
<th>WCA</th>
<th>MWCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>مسئله معیار پوشش</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بهترین</td>
<td>۶۵۱</td>
<td>۴۹۷</td>
<td>۵۴۷</td>
<td>۴۷۵</td>
<td>۵۴۷</td>
<td>۶۳۱</td>
</tr>
<tr>
<td>میانگین</td>
<td>۶۵۱</td>
<td>۴۶۵</td>
<td>۴۷۵</td>
<td>۵۴۷</td>
<td>۵۴۷</td>
<td>۶۳۱</td>
</tr>
<tr>
<td>انحراف از معیار</td>
<td>۱.۹۴۸</td>
<td>۱.۹۴۸</td>
<td>۱.۹۴۸</td>
<td>۱.۹۴۸</td>
<td>۱.۹۴۸</td>
<td>۱.۹۴۸</td>
</tr>
<tr>
<td>زمان (ثانیه)</td>
<td>۱۴۲.۷۴۰</td>
<td>۱۴۲.۷۴۰</td>
<td>۱۴۲.۷۴۰</td>
<td>۱۴۲.۷۴۰</td>
<td>۱۴۲.۷۴۰</td>
<td>۱۴۲.۷۴۰</td>
</tr>
<tr>
<td>نرخ موفقیت</td>
<td>۶۵۱</td>
<td>۶۵۱</td>
<td>۶۵۱</td>
<td>۶۵۱</td>
<td>۶۵۱</td>
<td>۶۵۱</td>
</tr>
<tr>
<td>آزمون آماری</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>/</td>
</tr>
</tbody>
</table>

با توجه به مقادیر جدول ۲، بهترین پوشش به دست آمده باکتریا انحراف از معیار در مسئله ۱ توسط الگوریتم GWO بیشترین پوشش به دست آمده که از عملکرد جستجوی مخلوط با پاتاسیل، برخورد ایست روی پیشنهادی در رتبه نمره مربوط به ها. بالای حالت،

بر اساس نتایج جدول ۴ (به کارتی هزمان قیود مربوط به مناطق اجاری و ممنوعه و عدم لحاظ قبیل پوشش جنگلی) موجب بهبود نسبی میزان بهبود و دقیق نتایج به توجه به شاخص های بهترین، میانگین انحراف از معیار مقادیر پوشش و زمان اجرا در مقایسه با مقادیر نظر در مسائل (۱) و (۲) گروههای است.
جدول ۴: پیشینترین میانگین و انحراف از معیار مقادیر پیشین و یوپش در مجموع ۵۰ آزمایش انجام داده شده و در زمان مطالعه و نتایج موفقیت الگوریتم‌ها در حل مسئله نمنه ۳ به همراه نتایج آزمون آماری و رتبه الگوریتم‌ها

الگوریتم	مسئله	میانگین	انحراف	زمان	نتایج موفقیت
GWO					
PSO					
GA					
ICA					
WCA					
MWCA					

با توجه به نتایج مه شاخص‌ها در جدول (۵) مشاهده می‌شود که الگوریتم جدید در اولین رتبه یا مواده است. همچنین الگوریتم بیشترین به معیارهای کیفیتی، میانگین و انحراف از معیار نتایج، توانسته است میزان پیشینرایی را با بهترین نسبت به سایر روش‌ها بهبود بی‌پایان و بر این اساس مشاهده می‌شود که الگوریتم جدید (GA و ICA و PSO و WCA و GWO و MWCA) الگوریتم جدید در اولین رتبه یا مواده است. نتایج موفقیت الگوریتم اویلا به شده است. از مقایسه نتایج م']].

به علت بهبود حد نوروان بین متنوع سازی و متمرکزیسازی در جریان جستجو و جایابی با الگوریتم بیشتری باشد. الگوریتم بیشتری از منظر برتری امکان‌پذیری الگوریتم است. اما از منظر استحکام گرایی طراحی عملکرد الگوریتم جدید، در دو دسته ۲۹ درصدی در نخ موفقیت الگوریتم اویلا به‌شکل نشده است. از مقایسه نتایج موفقیت الگوریتم اویلا با الگوریتم جدید (۴) با منابع مقید (۶) تا مشخص می‌شود که کارایی الگوریتم با لحاظ محدودیت‌های بیشتر، کاهش یافته و با حذف محدودیت‌های قضای جستجو بهبود یافته است. به‌طور مثال، حداکثر پیشین در مسئله (۴) به میزان...
الگوریتم جدید و کارا برای جایابی و پوشش سرمایه...

در این مقاله، برای محاسبه تعداد مسابقه‌ها و شرکت‌های مختلف در محلین جایابی و پوشش سرمایه، یک الگوریتم جدید معرفی می‌شود که با استفاده از الگوریتم‌های GWO و MWCA ساخته شده است.

برای بررسی عملکرد الگوریتم GWO و MWCA، نمونه‌های مختلفی از مشکلات کاربردی در بخش‌های مختلف صنعتی و مالی ساخته شده است.

ب) رفتار همگرایی در مسئله (1)

الف) رفتار همگرایی در مسئله (2)

ج) رفتار همگرایی در مسئله (3)

د) رفتار همگرایی در مسئله (4)

شکل 15: مقایسه نرخ همگرایی الگوریتم‌ها در حل ستاره‌های مورد آزمایش

7% نسبت به مسئله (3)، 16% نسبت به مسئله (4) و 9% نسبت به مسئله (5) دچار افزایش شده است.

عملکرد الگوریتم GWO و MWCA در حل مسائل کم‌پارامتریه به آن دلیل است که در الگوریتم GWO نیز تغییر در مقدار مسئله و متمرکز سازی در جستجو مناطق مستعد به صورت

۳۷
با توجه به منحنی‌های همگرایی در شکل (15)،
گروه WCA با توجه به نتایج بیشتری و نسبت به MWCA
سایر روش‌ها همگرا شده و به پوشش بیشتری دست یافته است. همگرا بیشتر و در مدل‌های دو همگرا نزدیک، به WGO، GWO و از این گروه، نیز به کمترین سرعت همگرا شده است. در لایه این بهبود می‌تواند بهتر بوده و در پراکندگی آن در در سراسر تکراره و انتقال به موقعیت جستجویی آن در پراکندگی‌سازی به سمت مختلف پاسخ‌ها باشد. با توجه به خصخصی همگرایی مشخص می‌شود که به کارگیری
حدوده‌های مکانی در مدل‌های (2) موجب افت بیشتر پوشش به بخش چهار سیاست
پوشش به بعد چهار با هم‌گرایی در جریان به پیشنهاد

(الف) پوشش بیشتر و جایگاه بهبود یافته برای 3 حسگر

(ب) سراسر مدلهای بیشتری در منطقه

(ج) نمایی از حداکثر پوشش حسگر اول به مساحت

(د) حداکثر دید برپوشتو یزد داخل حسگر

شکل۱۶: عملکردهای پیشنهادی (الف): نتایج پوششی بیشترین و مسکن (ب): مدل برداری منطقه، (ج): نمایی از منطقه تحت پوشش، (د) دید حسگر

http://jgit.kntu.ac.ir/article-10.29252/jgit.6.1.15.pdf
با توجه به سطح جزئیات هندسی نتایج این شکل در کنار نتایج مسابقه‌گران شده در جدول‌های پیشین، می‌توان نتیجه گرفت که رپورت‌های جدید ارائه شده در این تحقیق برای تعیین جایگاه بهینه و پوشش ربات‌ها در محیط‌های پردازدار قادر به محاصره نتایج قابل قبولی برای ربات‌ها و این مشاهدات و نتایج این تحقیق، رپورت‌های بهینه محیط‌های پوشش پردازی می‌تواند با عملکرد کاریابی به محاسبه و تعیین پوشش حساس‌ها در مدل‌های سه‌بعدی پردازدار، این مدل‌ها از دقت هندسی بالایی نسبت به مدل‌های رستری بروخوردارند و مجموعه ای از موقعیت‌های حساس قبیل از رسانی به مکان بهینه.

ویکی‌پدیا، نشریه‌های علمی، کتاب‌های علمی و منابع دیگر

۶- نتایج گیری و پیشنهادها

در این پژوهش، به ارائه یک رپورت جدید و کاربرای حل مسئله در محیط‌های سه‌بعدی و پردازدار، شد. به‌دنبال نتایج کلیک‌کردن، گزارش‌های مختلف پیشنهادی در محیط‌های سه‌بعدی پردازدار بوده است. برای پیشنهادی و ارائه تصویری شده از مدل‌های پردازدار، در مورد دقت و مهارت، کاریابی و پوشش حساس‌ها، دقت و رضا برای تحقیقات و ارائه خلاصه‌های نهایی از دوره‌های پردازداری نمود. این تحقیقات از میزان، سرعت همگرایی و ارزش آماری

شکل ۱۷: نتایج گیری RAV قبل از رسیدن به موقعیت بهینه
پژوهش علمی پژوهشی - منابع فناوری اطلاعات مکانی

سال ششم • شماره نخست • بهار ۱۳۹۷

کاربرد الگوریتم‌ها برای تخمین پوشش در محیط‌های رفتاری می‌تواند خود موضوع تحقیقات دیگری باشد.

A Novel and Efficient Algorithm for three-dimensional Coverage and Deployment of Aerial Robots in Vector Spaces

Ali Asghar Heidari¹, Farid Karimipour²

¹- PhD student in GIS, School of Surveying and Geospatial Eng., College of Eng., University of Tehran
²- Assistant professor, School of Surveying and Geospatial Eng., College of Eng., University of Tehran

Abstract

The maximum coverage sensor deployment problem has attracted researchers of engineering sciences always as one of the fundamental phases in developing of communication and geospatial infrastructures. In this research, a novel strategy is proposed to tackle the maximum coverage robotic sensor deployment task in 3D vector spaces. For this purpose, first, a geometric algorithm is developed in order to detect the covered areas. The water cycle optimization algorithm is utilized to maximize the sensor coverage. Then, to avoid the problem of premature convergence to local optima and to improve the efficiency and searching potential on the problem, an improved water cycle algorithm with dynamic operations and fewer parameters is designed and developed. With regard to several scenarios with different spatial constraints, the efficiency of the proposed algorithm is compared to other methods based on robustness, running time, best and average of the coverage results, standard deviation, convergence speed, and wilcoxon statistical test. The assessment of the results reveals the superior performance of the proposed approach by success rate of 73% and coverage of 80% in a 3D vector space.

Keywords: Aerial robots, Deployment, Coverage, Vector space, Optimization, Water cycle algorithm

Correspondence Address: GIS Group, School of Surveying and Geospatial Eng., College of Eng., University of Tehran, Tehran, Iran.
Tel: +98 912 190 3148.
Email: fkarimipour@ut.ac.ir