پیشینی گسترش آتش‌سوزی جنگل با استفاده از اتوماتای سلولی و شبکه عصبی مصنوعی

برهام پهلویان ا، حمیدرضا صحراییان ۱، بهناز بیکدلی ۲

چکیده
جنگل‌ها از جمله مهم‌ترین منابع طبیعی هستند که شاخصی محروم می‌سوزند و همچنین به حفاظت و مراقبت از آنها دارای اهمیت ویژه‌ای است. یکی از خطرات حساس‌ترین و مهم‌ترین این منابع است. یکی از جهادک‌ها می‌تواند به جنگل‌ها شود. این نوع سوزی و کارخانه‌های مواد کامپوزیتی از اهمیت فراوانی پیدا می‌کند. در روش پیشنهادی این تحقیق، برای اتوماتایی کارخانه‌های مواد کامپوزیتی در جنگل‌های داراک آتش‌سوزی جنگل کلیکی از کلیکی کارخانه‌های مواد کامپوزیتی، می‌تواند از اتوماتای سلولی و شبکه عصبی مصنوعی، اقدام به کارخانه‌ای کارخانه‌ای سوزی جنگل کلیکی برای برنامه‌ریزی و حاشیه‌سازی، از فیلتر هم‌سایگی و شی‌سازی استفاده ۵، ۷، ۲۷، ۴۰ و ۴۱ استفاده‌شده که با نهایت‌ترین این تحقیق، به‌طور دقت برای شبیه‌سازی آتش‌سوزی منطقه‌بندی مطالعه در تاریخ ۲۷ آبان ۱۳۸۹ با کلیکی ۴۰۲۹۲۰ و توان تفکیک مکانی ۳۰ متر بسته‌می‌آمد. در حالت حاضر کلیکی، شناخت عملاً نسبی و دقت کلی به ترتیب در بربر

کلیدواژه‌ها آتش‌سوزی جنگل، اتوماتای سلولی، شبکه عصبی مصنوعی

نویسنده مکتوب: کننده دانشکده مهندسی نفت و گاز، دانشگاه تهران

Email: pahlavani@ut.ac.ir

DOI: 10.29252/jgit.6.4.73
با الگوریتم زنتیک، ترکیب کرد و فاکتورهای بهبودی موتور بر آتشسوزی جنگل را در این منطقه تعیین کرد. در راستای شبیه‌سازی گسترش آتشسوزی جنگل نیز به‌وسیله‌هایی گسترش‌های انجام شد. استفاده از میزان جریان دیگه به یک سولول لایه اطراف خود بود [100]. در این مدل، هر سولول یاد به هدایت کافی در آن در محله بعد آتش یگری. زمان دریافت وهمکاران برای شبیه‌سازی گسترش آتشسوزی جنگل مدلی بر اساس این‌سانی سلولی و استفاده از فاکتورهای نظری نوع و تراکم بخش‌های، سرعت و جهت، توزیع‌گرهای و بیده و اتصال ارائه دادند [111]. اگر این اگر که استفاده از سولول‌های دارای طیف حجم محاسبات را بالا می‌برد بازاری در مدل شبیه‌سازی خود، از استخراج سلولی مربوط به همسایگی دسته استفاده کردن. همچنین برای کالبدی برخی از اجزای فاکتورهای مدل خود، از یک روش برای بهبود سازی جغرافیایی استفاده می‌شود. پرچم‌سازی سایر کناتیبی بر اساس سلول‌های شبیه‌سازی یا روش‌کردن ارائه شده توسط راتمر پیشنهاد دادند [121]. در این مدل هر سولول با یک بکاشن که باید نرخ گسترش آتشسوزی از آن سلول به‌وسیله‌های همسایه است. مشخص می‌شود. فاکتورهایی که بر نرخ گسترش آتشسوزی در آن سلول تأثیرگذارند شامل بخش‌هایی یا پدیده‌هایی که در این مدل، با چکگیری صنف طول اضافه شی تحقیقات در دانشگاهی ۱۳۹۷ شمسی شماره چهارم وزارت

1- مقدمه

در حال حاضر یکی از مهم‌ترین پیشرفت‌های تبریزی به‌طور معمول در سطح دنیا آتشسوزی جنگل ها است که گزارش‌های اخیر نشان‌دهند این سیستم‌های مسافتهای سیستم‌ها را برای یک کشور ایجاد می‌کند [1]. سیستم مسافتهای سیستم‌ها جنگل‌های دنیا در اثر وقوع آتشسوزی، نابود شدند و صدمات به‌روزهای روی زمین وارد می‌کند [2]. این یکی از میانعی فاکتورهای موتور بر آش‌سوزی و ناپویا ویژگی‌هایی دارد که این حیات را از جمله مسائل می‌دانند. این سیستم از سولول‌های جنگلی در این داده شده [9] از این مدل‌ها یکی‌سانی نیز می‌باشد. فاکتورهای موتور بر آتشسوزی جنگل که در تحقیقات بیشی‌تر بوده‌اند شامل فاکتورهای بیو‌فلزیکی و فاکتورهای انسانی بودند [3] و [5]. از فاکتورهای بیو‌فلزیکی می‌توان به شرایط جوی، توپوگرافی منطقه و ویژگی‌های سوختی اشاره کرد و فاکتورهای انسانی نیز شامل فاکتورهای تغییر کاربری زمین و میزان دسترسی به جنگل بودند. در راستای تعبیر فاکتورهای بهبود مخرب آتشسوزی جنگل، نیاز این است که نشان داد فاکتورهای موتور بر آتشسوزی جنگل از نظر مکانی متعلق به هر نیستند و دارای خود همبستگی مکانی ۱ می‌باشند. این نشان از تحقیقات از رگرسیون و دانشجویانی نشان داد که کاربری زمین، نوع پوشش گیاهی و میزان بارندگی، مهم‌ترین موارد ضروری بر آتش‌سوزی جنگل‌ها در منطقه مورد مطالعه ایشان بوده‌اند. همچنین [7] نیز با ارائه یک دسته‌ای نهاییت، در تحقیقات آتشسوزی‌های جنگلی گلستان کرد. ایشان سرگرمیزندر جغرافیایی را

3 Genetic Algorithm
4 Cellular Automata

1 Spatial autocorrelation
2 Geographically Weighted Regression
به کارگیری الگوریتم کانسیک نیز دلیل توانایی بالای کاربردی الگوریتم برای کاری یافتن جستجو در راستای شناسایی فاکتورهای مؤثر در نیت‌برداری در مدل‌ها رگرسیون است. به‌وسیله شیوه نتایج حاصل از مدل‌های رگرسیون دارای استحکام و دقت بالاتری، نتایج در این راستا از فیلترهای همسایگی مختل برای بررسی تأثیر فیلتر همسایگی در فرآیند کنترل انتخاب سوزنی جنگل. در ادامه، در زیر به باکس ۳، لیست روش پیشنهادی تحقیق ارائه شد و الگوریتم‌ها و روش‌های پیشنهادی در این تحقیق مورد استفاده. بازه ۳ به آنالیز مدل‌ها و روش‌های پیشنهادی داده‌ها می‌پردازد. بازه ۴ به پیاده‌سازی و ارزیابی نتایج می‌پردازد و در نهایت، بازه ۵ به نتایج‌گیری و ارائه پیشنهادات برای تحقیقات آینده می‌پردازد.

۲- روش پیشنهادی

در تحقیق حاضر، ابتدا بر پردازش‌های لازم بر روی فاکتورهای که در آن‌سوی جنگل گلستان تأثیرگذار بودند انجام شده است. نتایج مورد نیاز این فاکتورهای تولید شده. برای جلوگیری از ورود داده‌های با همبستگی والا به الگوریتم پیشنهادی که باعث ایجاد اختلال در فرآیند شیب‌سازی می‌شود، آماری همبستگی بین داده‌ها اجرا می‌گردد. سپس داده‌ها وارد الگوریتم زنیک در ترکیب با رگرسیون آسیایی تطبیقی جنگلگری می‌شوند. نتایج فاکتورهای بهینه‌سازی با توصیع آن‌سوی جنگل گلستان شناسایی شوند. برای ایجاد

۴ Artificial Neural Network

۴- Artificial Neural Network

۵ Artificial Bee Colony

۶ Particle Swarm Optimization

۷ Multivariate Adaptive Regression Spline
نقشه احتمال تغییر وضعیت سلول‌ها در هنگام آنتی‌ژن‌سوزی، فاکتور‌های بهینه وارد شده به‌مح GPLv مصنوعی که تعداد نرخ‌های لایه‌های نقشگر بهینه گردیده است، به‌صورت سه‌بعدی توزیع آنتی‌ژن‌سوزی چگال‌گرایی سلول‌های و نقشه احتمال جفت‌گرانه، این تحقیق در شکل (۱) ارائه شده است.

شکل ۱: نمونه کلی حل مسائل

یک سری اعداد ثابت (که به آنها گره ۱ گفته می‌شود) به چندین زیرمجموعه، در هر قسمت از یک گربه‌نی و خطی ۱ استفاده می‌شود و با تغییر شبیه این خطوط، از پیوستگی مدل نهایی اطمینان حاصل می‌گردد [۱۶] توابع پایه (اسپلاین)، از گره‌نی این روابط خطي با یکدیگر با و درجات مختلف حاصل می‌شود که رابطه بین متغیرهای مستقل و وابسته از طریق این توابع بیان می‌گردد.

۱۰ Linear Regression

۹ Knot
هاوی یا پارامتریک

\[GCV(M) = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - \hat{y}(x_i) \right)^2 \left(1 - \frac{\text{trace}(B^T B)^{-1} B^T)\right) \]

که در رابطه فوق، B یک ماتریس N×M شامل مقادیر اصلی X را می‌شود.

\[y = \beta_0 + \sum_{i=1}^{M} \beta_m B_{m}(x) \]

که در رابطه فوق، \(\beta_0 \) و \(\beta_m \) می‌باشد.

دقت‌های استفاده شده در حل مسئله توزیع پارامتریک و غیرپارامتریک از روش‌های پارامتریک و غیرپارامتریک استفاده می‌شود.

رگرسیون اسپلاین تطبیقی چندمنظوره، ترکیبی از روش‌های پارامتریک و غیرپارامتریک استفاده می‌شود.

11 Recursive Partitioning
12 Non-adaptive Spline Fitting
13 Generalized Cross Validation (GCV)
این گروهی از تعدادی سلول می‌باشد که می‌تواند از واکنش‌های مناسبی برای جامعه‌شان برخوردار باشد. این واکنش‌ها باعث افزایش احتمال زنده‌ماندن سلول‌ها در محیط زنده می‌شوند. اگر این سلول‌ها بتوانند در محیط زنده شود، وزن می‌باشد که می‌توانند از واکنش‌های مناسبی برای جامعه‌شان برخوردار باشند. این واکنش‌ها باعث افزایش احتمال زنده‌ماندن سلول‌ها در محیط زنده می‌شوند.

coding

4-2- آنومالی سلولی

آنومالی سلولی سیستم گستی، بیماری غیر به‌شماره‌ای است که می‌تواند از وضعیتی تصادفی شروع به‌کار کرده و در نهایت مبتلای مرتب ایجاد نماید. بنابراین، این سیستم قادر است در طول زمان، انتروپی را با کاهش [22] آنومالی سلولی دارای گستنی‌های توده‌ای و گستنی‌های سلولی است. گستنی‌های فضایی که بین معنی است که آنومالی سلولی شامل شکل n بی‌توجهی دارد. از سلول‌ها بوده که هر یک از این سلول‌ها قادر به صفر مقدار و وضعیت‌های مشخصی داشته باشد. گستنی‌های مناسب و وضعیت هر یک از این سلول‌ها با توجه به وضعیت سلول‌های همسایگی در گام‌های زمانی منفی به تکرار قوانین آنومالی سلولی تغییر می‌کند. اگر آنچه آنومالی سلولی شامل فضای سلولی، همسایگی، تغییرات آن، انعطاف، مجموعه وضعیت سلول‌ها و دانستگی باشد [25]. در آنومالی سلولی برای مدارسی محور سلول‌های تغییر وضعیت‌های نازنی انتظار تغییر وضعیت در سلول‌های مختلف بررسی شود. این احتمال

3 Fitness function
4 State
5 Entropy

14 Reproduction
15 Coding
در تحقیق حاضر، سیستم‌های آتشفشانی به کل سیستم‌های همسایه می‌باشد که توسط نماینده در لحظه $t+1$ اتصال گزارش شده است.

$S_{ij}^{t+1} = S_{ij}^t + S_{ij}^{(gen)}(X_1, X_2, ..., X_n)$

با استفاده از رابطه زیر به دست می‌آید [۲۶]

$R_{ij} = \frac{A_{ij}}{A_i}$

که در رابطه فوق، A_{ij} و A_i این گر نسبت مساحت تغییر وضعیت یافته و S_{ij} مقدار S برای S_{ij} سیستم به راه اندازی ونداده با عدد S_{ij}، برای سیستم در حال تغییر، مقادیری بین صفر تا S و برای سیستم بدون تغییر، برابر با عدد S_{ij} می‌باشد.

وضعیت سیستم مرکزی و سیستم همسایه آن در لحظه t و وضعیت آن سیستم در لحظه $t+1$ تأثیرگذار است که به صورت باعث راه اندازی انتقال اتوماتای سلولی بیان می‌شود. این تابع در حالت دو بعدی به صورت رابطه زیر بیان می‌شود [۲۷]:

$S_{ij}^{t+1} = S_{ij}^t + S_{ij}^{(gen)}(X_1, X_2, ..., X_n)$

در رابطه فوق، $S_{ij}^{(gen)}$ نسبت از سیستم‌های مختلف سیستم مرکزی به دست آورده که در آن $S_{ij}^{(gen)}$ تعداد سیستم‌های همسایه سیستم مرکزی می‌باشد.

شکل ۳: یک سیستم مختلف شبکه عصبی مصنوعی

در مدل فوق، بردار A نرونهای ورودی که بردار ورودی مجموعه است، فاکتورهای بهبود سوئی بر آن‌های سوزی جنگل‌گزاران را وارد شبکه عصبی مصنوعی می‌کند. ابتدا با توجه به روش پس از انتقال ۱ برای تعیین و تصحیح وزنهای بین نرونهای مختلف، به صورت تصادفی بر‌های هر نرونه، وزنه در نظر می‌گیرد.

2 Transfer Function

1 Back Propagation
دنیزه علمی پژوهش - همگانی فناوری اطلاعات مکانی
سال ششم هفته چهارم رستاک 1397

یادگیری پدید‌گری به اتمام می‌رسد. ضریبی که بردار ورودی (فازتیارهای بهینه موثر بر آن‌شی‌سوزی چندگانه‌نیا) در آن ضریب می‌شود پارامتر وزن نمایندگی می‌گردد. از کنار هم قرار دادن مسیر زیادی از این سلول‌ها شکله عمیق مصنوعی برای ورودی و ایجاد آماده که رفته‌اند به تابع خروجی و مقادیر W و b وابسته است که b بیان‌گر پایین‌ترین شکله است. در یک آزمایش واقعی، بعد از ارائه بردار ورودی، شکله‌ای با تعداد‌گیری خروجی و با انتخاب پارامترهای W و b به‌صورتی که خروجی مطلوب بدست آید، آموزش می‌پیدا که فایریندیاگرام‌ساده‌شناسی می‌شود [۱۰]. پس از فایریندیاگرام‌ساده‌شناسی می‌توان از این شکله‌ای بر حسب مسایل ایجاد شده از ترکیب مختلط ورودی‌ها استفاده کرد. برای انتقال بین لاشه‌های ورودی مباین خویش، از کم‌توان راه‌های بازگشایی مثبت می‌پیدا و شکله‌ای پرسته‌دن نهایی به پای که منطقه با توان تبدیل سیگموئی در لاشه مباین واقع سبیل خلی در این خروجی، می‌توانند توان عبور را با ۲ هر درجه تقید برند [۱۹].

۵-۵-۲ روش‌های ارزیابی نتایج

شکله‌های آماری مختلف برای بروز دقیقه نتایج حاصل از شیب‌سازی‌ها کار گرفته می‌شود. در این تحقیق از دقت کلی، شاخص کافی و شاخص عامل نسبی برای ارزیابی نتایج استفاده شده است.

۵-۵-۱ دقت کلی و شاخص کافی

شکله‌های آماری آماری دقت کلی و شاخص کافی بر اساس معیار متقابل و عناصر موجود در آن

۱. 偏差 (Bias)
۲. 全局准确率 (Overall Accuracy)
۳. 卡帕指数 (Kappa Index)
۴. 相对运作特性 (Relative Operating Characteristic)
پیش‌بینی گسترش آتش‌سوزی جنگلی با استفاده از
پرده‌پیچانی. حمیدرضا محراری‌نیا. بهترین بیکدلی

گسترش یافته‌اند و D بیانگر تعداد سالور هایی است که هم در نتیجه شیب‌سازی شده و هم در همیشه واقعی در گسترش نیافته‌اند.

با این نتایج، هرچه تعداد سالور‌های C و B کمتر باشد، جریان شیب‌سازی بیشتر خواهد بود. برای مثال، اگر حد آستانه برای با 5 درصد باشد شاخص عامل نسبی از سالور هایی بر بیشترین احتمال در نتیجه شیب‌سازی شروع می‌کند و مقدار آن را برای با عدد یک قرار می‌دهد. این کار تا زمانی که 5 درصد سالورها با عدد یک تغییر یابند ادام می‌کند و بقیه سالورها را برای یک صفر قرار می‌دهد.

مقدار رابطه‌های (11) و (12) با استفاده از نقشه تولید شده در این مرحله نشان دهنده احتمال جدول مقایسه، محاسبه می‌شود. این عمل به ترتیب تا حد آستانه 100 درصد پیش‌رفتگی و نمودار شاخص عامل نسبی، کامل می‌شود. در نهایت، مساحت زیر سطح این نمودار را محاسبه کرده که عددهای این افق در دو تا 1 تا 1 درصد هوا، آماده عدد 50، بیانگر پرازش انطباق و عدد 1 بیانگر بهترین پرازش است.

شکل 3: منطقه مورد مطالعه در نقطه پهن‌پوستی‌های ایران

دانه‌های درک این تحقیق شامل مدل ارتقای منطقه، شبکه راه‌ها و رودخانه‌ها، کاربری اراضی، جنس خاک و مناطق مسکونی مشترک در منطقه (5)

۱ Digital Elevation Model
نمایش داده شده‌اند. این داده‌ها از سازمان نقشه‌برداری کل کشور و سازمان منابع طبیعی استان‌های کل‌ستان، خراسان شمالي و سمنان تهیه شده‌اند. همچنین داده‌های هوایی که شامل ۵ استگاه هوایی‌سازی متغیر و نسبت به میانگین بالایی و هم‌نوازی در منطقه مورد مطالعه است به‌مراتب مختصرتری می‌باشد. این داده‌ها بسیار مفید هستند تا در حالت داده باشد. در این مورد، هر دو داده واقعی و داده‌های موردی تقلیدی باید به‌طور مشترک مورد استفاده قرار گیرد. در جدول زیر، تغییرات در دقت و تکراریتی داده‌های هوایی با توجه به این داده‌ها نشان داده شده است.

![نمایش داده شده‌اند. این داده‌ها از سازمان نقشه‌برداری کل کشور و سازمان منابع طبیعی استان‌های کل‌ستان، خراسان شمالي و سمنان تهیه شده‌اند. همچنین داده‌های هوایی که شامل ۵ استگاه هوایی‌سازی متغیر و هم‌نوازی در منطقه مورد مطالعه است به‌مراتب مختصرتری می‌باشد. این داده‌ها بسیار مفید هستند تا در حالت داده باشد. در این مورد، هر دو داده واقعی و داده‌های موردی تقلیدی باید به‌طور مشترک مورد استفاده قرار گیرد. در جدول زیر، تغییرات در دقت و تکراریتی داده‌های هوایی با توجه به این داده‌ها نشان داده شده است.](image-url)
پیشینه گسترش آتش‌سوزی جنگلی با استفاده از پرهاه پیوندی، حیات‌ربایان محیطی، به‌بکه‌گلی

شکل ۶: استفاده‌های هوشمندانه سیستم‌های نرم‌افزاری به منطقه مورد مطالعه

داده‌های اخذ شده از این استفاده‌های هوشمند شامل حداقل، متوسط و حداکثر دما، میزان بارش، حداکثر سرعت باد و جهت عمده ورش وارد می‌شود. با توجه به این که مقادیر این داده‌ها به‌صورت نقطه‌ای بوته، برای این که با کمترین نگاه به آن داده‌ها را برای نمایش منطقه دقیقاً و درون‌بایی داده‌های هوشمندی را به‌عنوان نمونه برای تاریخ ۲۴/۹۹ به‌کار می‌برید.

لایه‌های اطلاعاتی شدید و جهت شیب با استفاده از مدل ارتقاء منطقه تهیه شده که در شکل (۸) با توان فنیکیک مکانی ۳۰ متر نمایش داده شده است. آنالیز فاصله الکلیدی در نرم‌افزار ArcGIS برای تبدیل لایه‌های اطلاعاتی با ساختار برداری به ساختار رستری استفاده شد. این لایه‌ها شامل مناطق مسکونی، راه‌ها و رودخانه‌ها بوده که این نقشه‌ها در شکل (۹) نمایش داده شده است.

با توجه به این که در اجرای الگوریتم پیشنهادی، نیاز به نقشه‌های متعدد نمی‌شود، این روش‌ها با توجه به این، فنیکیک‌های دوی‌های همبستگی بالا را حذف کرده‌اند.

1. Ordinary Kriging
2. Positional Resolution
به صورت ضمنی همبستگی بین فاکتورهای در بیشترین حالات همبستگی بین فاکتورهای این تحقیق (بعینی ضریب همبستگی ۰.۷۱) ۳۰/۰ در نظر می‌گیرد. بنابراین بهتر است تمام فاکتورهای عدم همبستگی وجود دارد و نمی‌توان از آن موجود را وارد الگوریتم زننگی کرده تا اجراه داده شود خود الگوریتم زننگی به‌ترتیب از فاکتورهای را انتخاب کند.

شکل ۷: فاکتورهای اطلاعاتی موجود در داسیال یا درون‌پایی (الف) میزان بارندگی (mm). (ب) جهت باد غربی، (چ) حداقل سرعت باد (m/s)، (د) متوسط دما (°C)، (ه) حداقل دما (°C)، (و) حداقل دما (°C). (ز) بین ابستگی‌های هواشناسی نزدیک منطقه مورد مطالعه برای تاریخ ۲۴ تیر ۱۳۹۰.

شکل ۸: فاکتورهای اطلاعاتی (الف) شیب (Degree clockwise) و (ب) جهت شیب (Degree)
پیشینه گسترش آتش‌سوزی جنگلی با استفاده از برهم پیوندی، حس‌پذیر حرارتی، به‌کلیه

در ادامه، واسطه‌ی آتش‌سوزی‌های جنگلی در ارائه‌شده‌اند، مورد بررسی قرار گرفته‌اند.

\[\text{شکل 9. لابه‌های اطلاعاتی فاصله از (اف) مناطق مسکونی (m), (ب) جاده‌ها (m) و (ج) رودخانه‌ها (m).}\]

\[\text{جدول 1: فاکتورهای مورد مطالعه در این تحقیق.}\]

<table>
<thead>
<tr>
<th>نوع فاکتور</th>
<th>شماره</th>
<th>نوع فاکتور</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) بیوفیزیکی</td>
<td>8</td>
<td>فاصله از رودخانه‌ها (m)</td>
<td>1</td>
</tr>
<tr>
<td>2) بیوفیزیکی</td>
<td>9</td>
<td>فاصله از جاده‌ها (m)</td>
<td>2</td>
</tr>
<tr>
<td>3) بیوفیزیکی</td>
<td>10</td>
<td>فاصله از مناطق مسکونی</td>
<td>3</td>
</tr>
<tr>
<td>4) بیوفیزیکی</td>
<td>11</td>
<td>جنس خاک</td>
<td>4</td>
</tr>
<tr>
<td>5) بیوفیزیکی</td>
<td>12</td>
<td>جهت باد غالب</td>
<td>5</td>
</tr>
<tr>
<td>6) بیوفیزیکی</td>
<td>13</td>
<td>ارتفاع (m)</td>
<td>6</td>
</tr>
<tr>
<td>7) بیوفیزیکی</td>
<td>14</td>
<td>مقدار شب</td>
<td>7</td>
</tr>
</tbody>
</table>

برای سنگین‌سازی آتش‌سوزی‌های مورد مطالعه با فاکتورهای جدول (1)، رگرسیون اسلاین تطبیقی چندنگره‌ی با گریز زنگی ترکیب شده تا همواره با عمل رگرسیون، ترکیب بهینه‌ای از فاکتورهای بهینه موتر بر آتش‌سوزی منطقه مورد مطالعه به‌دست آید.

جمعیت با همان نسل اول کروموزوم‌ها به صورت تصادفی اجود می‌شود که هر کروموزوم دارای 14 زن با همان فاکتورهای معیاری می‌باشد و به‌صورت بانری تعريف می‌شود. ترتیب فاکتورهای در تشكل هر کروموزوم از الگوریتم زنگی، به همان ترتیب است که در جدول (1) آمده است. در این تحقیق از الگوریتم

1 Single Point Crossover
2 Gaussian Mutation
چندمیتره، ۳۰ بار اجرا شده و میانگین این تعداد
تکرار، به‌عنوان خروجی نهایی در نظر گرفته شده است.
میانگین مقادیر نتایج برای برآورد با ۱۷۶۷
بدهست آمد و ۹ فاکتور شال حداکثر دما،
متوسط دما، جهت باد غالب، حداکثر سرعت باد
جوش خاک، کاربردی زمین، جهت شیب و عمق از
مناطق مسکونی به‌عنوان فاکتورهای بی‌پرو،
تعیین شده شکل (۱۱۱)، میانگین نتایج بدهست آمد
از ۳۰ بار تکرار الگوریتم زننکی را نما نشده.

جدول ۲: پارامترهای الگوریتم زننکی مورد استفاده

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population size</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>Number of Generations</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>Crossover rate</td>
<td>۰/۸</td>
</tr>
<tr>
<td>Migration Fraction</td>
<td>۰/۲</td>
</tr>
<tr>
<td>Migration Interval</td>
<td>۲۰</td>
</tr>
<tr>
<td>Scale (Gaussian Mutation)</td>
<td>۰/۵</td>
</tr>
<tr>
<td>Shrink (Gaussian Mutation)</td>
<td>۰/۷</td>
</tr>
<tr>
<td>Elite count</td>
<td>۱</td>
</tr>
</tbody>
</table>

ترکیب الگوریتم زننکی با رگرسیون اسپلاین تطبیقی

نتایج رگرسیون اسپلاین تطبیقی چندمیتره در نهایت
با ۸ تابع یا به GVC برآورد با ۱۷۶۷ ۲۵۷۸ به پایان رسید و
مقادیر جذور میانگین مربعات خطأ (RMSE) و
جدور میانگین مربعات خطأ نرمال شده
بالغ مانده‌های مدل به ترتیب برای با ۱۷۶۷،
۱۷۶۷ به دست آمد.

در ادامه با استفاده از فاکتورهای بی‌پرو،
به‌عنوان سوزری جنگل منطقه کورد مطالعه، می‌توان
شهبازی گسترش آتش‌سوزی جنگل را در این
منطقه بر اساس انواماتی سلولی انجام داد. یکی از
مان‌ها معمول در انواماتی سلولی، گفته همسایگی
است که نقش سلول‌های همسایه را مشخص می‌کند.
در این تحقیق از فیلتر همسایگی و نیوم ۰ و نیوم

۱ Root Mean Square Error
۲ Normalized Root Mean Square Error
۳ Von Neumann
پیش‌بینی گسترش آتش‌سوزی جنگلی با استفاده از...

برهای پهلوانی، حمیدرضا محرمیانی، بهنام بیگدلی

مصنوع پریستون‌چند رابطه‌ای با یک لایه میانی استفاده شد. تعداد نمونه‌های توالی بار بر آتش‌سوزی به‌عنوان میانه تعداد برآورد با عدد ۹ بوته و تعداد نمونه لایه خروجی که بیان‌گر نشان احتمال تغییر وضعیت سلول‌ها است، برنامه با عدد ۱ قرار گرفت. در این مدل، برای قسمت آموزش شبکه عصبی مصنوعی ۱۰۰۰ نمونه (تکرار انیمیشن و نرخ بادگیری بالا ۱:۲) بوته و از تابع محرک هایبرید به سیگمود اسکیومین استفاده گردید. بعد از تعیین آتش‌سوزی ورودی که شامل آتش‌سوزی‌های همستد و نهض آتش‌سوزی اتفاق افتاده (آتش‌سوزی وابسته) هستند و مشخص کردن منبع همبستگی عصبی مصنوعی، اقدام به تعیین تعداد نمونه به وسیله برای لایه میانی شبکه عصبی مصنوعی شد. در اینمثلی ۵ درصد داده‌های مستقل به عنوان ورودی استفاده شد که ۷۰ درصد این داده‌ها برای بادگیری و ۳۰ درصد برای تصدیع به کار گرفته شد. انتخاب الگوی آینده بر اساس میانگین یک‌روش در کل منطقه مورد مطالعه به‌گونه‌ای بود که نیمی از آنها در قسمت سرعت‌های و نیمی دیگر در قسمت سرعت‌های بند بودند. برای تعیین تعداد نمونه لایه میانی شبکه عصبی مصنوعی از عدد ۲ شروع کرد و ۱۲ نمونه پیش رفتیسی مقدار RMSE هر یک برای داده‌های تست محاسبه شد که برای آتش‌سوزی توالی ۱۳۸۰ تعداد ۷ نمونه و برای آتش‌سوزی توالی ۱۳۸۹ تعداد ۶ نمونه دارای گسترش RMSE پیش‌بینی شد. در این‌جفت اطلاعات تغییر وضعیت سلول‌ها که بیان‌گر استعداد هر سلول برای سرعت‌های تحت تأثیر آتش‌سوزی است، در توان تغییر وضعیت سلول‌ها متفاوت همان طور که در شکل‌های (۱۲) و (۱۴) نمایش داده شده است، ایجاد شدند.

با توجه در نظر گرفتن نقص‌های آتش‌سوزی به‌عنوان میانه بر آتش‌سوزی جنگلستان، محصول آتش‌سوزی‌ها و اجرای روش شبکه عصبی مصنوعی، مدل‌سازی احتمال تغییر وضعیت سلول‌ها به‌دست آمد. سپس نقشه احتمال تغییر وضعیت سلول‌ها که بیان‌گر استعداد هر سلول برای سرعت‌های مختلف همان طور که در شکل‌های (۱۲) و (۱۴) نمایش داده شده است، ایجاد شدند.

متن متن ساده را در سایت‌های درست بدانید.
شکل ۱۲: مقدار تغییرات rmse با توجه به تعداد نرون‌های مبناش شیب‌های عصبی مصنوعی برای آتش‌سوزی تاریخ الف (۱۳۸۹ و ب) (۲۴ تیر ۱۳۸۹)

شکل ۲۳: نشان‌دهنده احتمال تغییر وضعیت سلول‌ها حاصل از شبکه عصبی مصنوعی برای تاریخ ۱۳۸۹ آبان با پان‌های تلفیکت

مکانی الف (۳۰ متر، ب) (۶۰ متر و ج) (۹۰ متر)

شکل ۲۴: نشان‌دهنده احتمال تغییر وضعیت سلول‌ها حاصل از شبکه عصبی مصنوعی برای تاریخ ۱۳۹۰ آبان با پان‌های تلفیکت

مکانی الف (۵ متر، ب) (۱۰ متر و ج) (۱۵ متر)

جگر در منطقه مورد مطالعه استفاده کرد. نقش‌های حاصل از شبیه‌سازی گسترش آتش‌سوزی جگر گلستان با به‌کارگیری اوتوماتیک سلولی و شبکه عصبی مصنوعی برای آتش‌سوزی تاریخ ۱۳۸۹ و ۱۴ آبان ۱۳۹۰ و ۲۴ نب در تالیف شدند. برای نمونه، این نقش‌های با بکارگیری فیلتر همسایگی ۳×۳ در شکل‌های (۱۵ و ۱۶) نمایش داده شدند.
پیشینه گسترش آتش‌سوزی جنگلی با استفاده از...

پرهمان پهلوئی، حسین‌زاده محرانیان، بهنام بیکدیلی

شکل ۱۵: نقشه شیب‌سازی گسترش آتش‌سوزی جنگل‌گی جنگلستان با پکارگیری انواع‌سای سولولی و شبکه معمولی برای تاریخ ۲۶ آبان ۱۳۸۹ با فیلتر همسایگی ۳×۳ و توان‌های تفکیک مکانی (الف) ۳۰ متر، (ب) ۶۰ متر و (ج) ۹۰ متر

شیب‌سازی گسترش آتش‌سوزی جنگل‌گی جنگلستان با پکارگیری انواع‌سای سولولی و شبکه معمولی را برای مشخص کردن دقت شیب‌سازی‌های گسترش آتش‌سوزی جنگل‌گی جنگل‌گی جنگلستان با پکارگیری انواع‌سای سولولی و شبکه معمولی را نمایش می‌دهند.

جدول ۳: نتایج حاصل از شیب‌سازی گسترش آتش‌سوزی جنگل‌گی جنگلستان با پکارگیری انواع‌سای سولولی و شبکه معمولی با فیلترهای همسایگی و توان‌های تفکیک مکانی مختلف برای تاریخ ۲۶ آبان ۱۳۸۹

<table>
<thead>
<tr>
<th>شاخص عامل نسبی</th>
<th>شاخص کلی دقت کلی</th>
<th>شاخص کلی توان تفکیک مکانی (متر)</th>
<th>فیلتر همسایگی</th>
<th>شاخص کلی نقطه</th>
<th>توان تفکیک مکانی (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۹۱۷</td>
<td>۰.۹۵۳</td>
<td>۰.۸۹۰</td>
<td>۳×۳</td>
<td>۰.۹۵۱</td>
<td>۰.۸۸۶</td>
</tr>
<tr>
<td>۰.۹۱۷</td>
<td>۰.۹۵۳</td>
<td>۰.۸۹۰</td>
<td>۶×۶</td>
<td>۰.۹۵۱</td>
<td>۰.۸۸۶</td>
</tr>
<tr>
<td>۰.۹۱۷</td>
<td>۰.۹۵۳</td>
<td>۰.۸۹۰</td>
<td>۹×۹</td>
<td>۰.۹۵۱</td>
<td>۰.۸۸۶</td>
</tr>
<tr>
<td>۰.۸۸۸</td>
<td>۰.۹۴۷</td>
<td>۰.۸۷۴</td>
<td>۳×۳</td>
<td>۰.۹۴۱</td>
<td>۰.۸۶۹</td>
</tr>
</tbody>
</table>

89
جدول 4: نتایج حاصل از شیب‌سازی گستر، آتش‌سوزی جنگل گسل‌پای با گاگری‌های انواعی سلولی و شبکه عصبی منوعی

<table>
<thead>
<tr>
<th>شاخص عامل</th>
<th>کلیت</th>
<th>شاخص کلیت</th>
<th>فیلتر همسایگان</th>
<th>توان تفکیک مکانی (متر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاخص عامل</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>نسبت</td>
<td>دقت</td>
<td>دقت کلی</td>
<td>دقت کلی</td>
<td></td>
</tr>
<tr>
<td>0.942</td>
<td>0.080</td>
<td>1.062</td>
<td>1.082</td>
<td></td>
</tr>
<tr>
<td>0.922</td>
<td>0.086</td>
<td>1.068</td>
<td>1.086</td>
<td></td>
</tr>
<tr>
<td>0.900</td>
<td>0.081</td>
<td>1.061</td>
<td>1.081</td>
<td></td>
</tr>
<tr>
<td>0.914</td>
<td>0.078</td>
<td>1.055</td>
<td>1.075</td>
<td></td>
</tr>
<tr>
<td>0.918</td>
<td>0.076</td>
<td>1.056</td>
<td>1.076</td>
<td></td>
</tr>
<tr>
<td>0.918</td>
<td>0.075</td>
<td>1.055</td>
<td>1.075</td>
<td></td>
</tr>
<tr>
<td>0.909</td>
<td>0.059</td>
<td>1.058</td>
<td>1.078</td>
<td></td>
</tr>
<tr>
<td>0.906</td>
<td>0.058</td>
<td>1.056</td>
<td>1.076</td>
<td></td>
</tr>
<tr>
<td>0.902</td>
<td>0.055</td>
<td>1.055</td>
<td>1.075</td>
<td></td>
</tr>
</tbody>
</table>

نتایج: همان‌طور که در جدول 3(۲) و (۴) نشان داده شد، استبعاد بهترین دقت شیب‌سازی آتش‌سوزی جنگل گسل‌پای با گاگری‌های انواعی سلولی و شبکه عصبی منوعی در تاریخ ۲۴ آبان ۱۳۸۹، برای توان تفکیک مکانی ۵ متر با فیلتر همسایگی ۵ محصول شده است. در همان‌طور که در جدول 3(۲) نشان داده شد، استبعاد بهترین دقت کلی شاخص کلیت و شاخص عامل نسبت برای تاریخ ۲۴ آبان ۱۳۸۹ بهترین دقت ۱.۹۲۷ بهترین دقت ۱.۹۲۷ بین تاریخ‌های ۲۴ آبان ۱۳۸۰، ۲۴ آبان ۱۳۸۹ و ۲۴ آبان ۱۳۹۰ بود، این نکته نوآوری باید در تولید فیلتر همسایگی ۳۰۷ وارای دست تری شیده‌سازی آتش‌سوزی جنگل‌پای برای خود تغییر مقدار استفاده از فیلتر همسایگی ۵۰۵ بهترین دقت ۱.۹۲۷ بهترین دقت همسایگی ۳۰۷ این نکته در نهایت به تولید فیلتر همسایگی ۵۰۵ می‌باشد. همچنین با بررسی دقت شیب‌سازی‌ها ملاحظه می‌شود که برای آتش‌سوزی تاریخ ۲۴ آبان ۱۳۸۹ بهترین
پیشینه گسترش آتش‌سوزی جنگلی با استفاده از پرهام بهباتوان، جبراییه مهران‌نام. بهتاز بیکدلی

منطقه، نزدیکی کنند. در این تحقیقات، عموماً از یک منطقه، تعدادی از گسترش آتش‌سوزی جنگل استفاده شده است. این مدل‌ها معمولاً محله‌های کلی و غیرمعنی‌آمیز و ممکن است با شرایط و ویژگی‌های تمام مناطق جنگلی مطابق نداشته باشند. البته در مطالعه [۲۸] سعی شد ضرایب مدل مورد استفاده به‌همه گردند تا یک نگاه به‌گیری‌های مورد مطالعه، نسبت به‌شیرین‌تر بوده و در همان طور که در جدول (۵) ملاحظه می‌شود، دقت نتایج به‌همراه این است. یکی دیگر از نتایج این فاکتورها بخصوصی را به عنوان فاکتورهای مؤثر بر آتش‌سوزی سایر فاکتورها که ممکن است تأثیر قابل توجهی بر روند گسترش آتش‌سوزی جنگل طبقه‌بندی مطالعه داشته باشد. ولی برخی فاکتورهای بین‌همه که در تمام این تحقیقات به ان توجه نگرفته‌اند استفاده از کاربردی برای شناسایی فاکتورهای بین‌همه از میان تأمین فاکتورهای اول در مصرف است. استفاده از چنین کاربردی برای شناسایی گسترش آتش‌سوزی جنگل سپس می‌شود فاکتورهای بین‌همه شناسایی شده تا هم در پیچیدگی مشاهده و رسانه‌ای‌یافتن کاربردی کاسته شود و هم دقت تجربه حاصل از شناسایی به‌همراه یافتن ارتباطات غیر معنی‌آمیز از نظر می‌تواند کاربردی در نموندگی از شیوه مصرف مورد استفاده شده است، بیشتر از روشهای مورد استفاده در تحقیقات شیوه می‌باشد.

۵- نتیجه‌گیری

در تحقیقات فوق که همانند این تحقیق در فضای سری‌صورت گرفته‌اند، نشان داده شد این تحقیق از فاکتورهای مؤثر بر آتش‌سوزی جنگل نظیر شرایط توده‌گرگان و شرایط آب و هوایی، شیب‌سازی، گسترش آتش‌سوزی جنگل را تا حد امکان به‌واضیت موجود در

۹۱
جنجل گلستان با بکارگیری آنومانی سلولی و شبکه عمیق مصنوعی در تاریخ ۱۴ اسفند ۱۳۸۹، برای فناوری تکنیک مکانیک مونو تکنیکی مکانیک ۲۰ و در تاریخ ۲۴ اسفند ۱۳۸۹، برای تکنیک مکانیک ۵ متری دسته آماده شد. در این حالت شاخ و دکت کلی و شاخ عامل نسبی برای تاریخ ۲۴ اسفند ۱۳۸۹، برای ۲۴ هزارا. ۸۹۰ و ۳۹۲ حاصل شدند. بر اساس جدول های (۱) و (۴)، هرچه توان تکنیک مکانیک داده‌کننده کوچکتر می‌شود، شبیه‌سازی دقت پهنتری و خواهد داشت. البته این نکته باید در فواصل ساعتی که کاهش توان تکنیک مکانیک باعث افزایش زمان لازم برای اجرای آنومانی‌های خودش شیب‌پیشنهادی این تحقیق، اطمینان بیشتری با آش‌سوزی تاریخ ۲۴ اسفند ۱۳۸۹، در زیرا شاخ کافی و دقت کلی برای شبیه‌سازی گسترش آنت‌سوزی جنجل گلستان در این تاریخ از مقدار همیش شاخ هر یک آنت‌سوزی تاریخ ۲۴ اسفند ۱۳۸۹، بریست است.

نتایج حاصل از این تحقیق نشان داد که آنومانی مورد استفاده برای شبیه‌سازی توسعه آنت‌سوزی جنجل، توسعه این دقت شبیه‌سازی را نسبت به روش‌های بینی، آموزش داده و سپس گرم نتایج شبیه‌سازی با واقعیت موجود، اطمینان بیشتری پیدا نمی‌نماید. همچنین با توجه به موتور بودن فیلتر هم‌سازی و توان تکنیکی مکانیک در شبیه‌سازی هر توسه آنت‌سوزی جنجل، در تحقیق حاضر، این عوامل مورد توجه و بررسی قرار گرفتند. نتایج حاصل را بهبود دهنده که امکان‌ها نشان می‌دهد بیشتر آنت‌سوزی‌های اتفاق افتاده در جنجل گلستان دارای منشا‌های ناسانی بوده و با این مسئله است که باید توجه بیشتری پرداخته انسانی و انسانی‌تر در تشکیل جنجل بی‌فرآیند. یعنی بیشتر گردد. همچنین با توجه به تأثیر فضاهای سلولی و فیلترهای هم‌سازی مختلف بر روی ایجادکننده آنت‌سوزی و بیشتر نیز نحوه گسترش آن می‌تواند مرا به دست آوردن عوامل تشکیل در این نوع آنت‌سوزی نشان‌دهنده آنت‌سوزی را پیدا کند. در تحقیق حاضر، در گام اول ناش و نشان دهنده آنت‌سوزی جنجل گلستان تعبین شد که در این راستا از ترکیب الگوی زنیکه با روش گروهی سیستم استفاده شده‌است تطبیقی جدید متغیره بهره‌گیری شده. با استفاده از این ترکیب، ۹۰ فاکتور از میان ۱۴ فاکتور مورد به عنوان فاکتورهای بهبود موتر در آنت‌سوزی جنجل گلستان تعیین شدند. این ۹ فاکتور شامل حداکثر ۲۵ تا متوسط دما، شرایط بیرونی، حداکثر سرعت نا، دش ایرانی و فاکتور وصل کننده از مناطق مسکونی بودنگ از این فاکتورهای برای شبیه‌سازی گسترش آنت‌سوزی در این منطقه استفاده شد. در این تحقیق، شبیه‌سازی گسترش آنت‌سوزی جنجل گلستان بر اساس آنومانی سلولی صورت گرفت که به کارگیری عصب عمیق مصنوعی سعی شد.

جهت تعیین تأثیر توان تکنیک مکانیک بر نتایج شبیه‌سازی گسترش آنت‌سوزی جنجل گلستان از توان‌های تکنیک مکانیک مختلف استفاده شد تا بتوان مقادیر بهینه را به‌هم در آن‌ها، برای راه اندازی آنت‌سوزی تاریخ ۲۴ اسفند ۱۳۸۹، برای ۹۰ و ۹۰ متر و برای آنت‌سوزی تاریخ ۲۴ اسفند ۱۳۸۹، برای ۱۳۹۰ و ۱۵۰ متر به‌دست آمد. برای تغییر فیلتر هم‌سازی مناسب، شبیه‌سازی را در فیلترهای هم‌سازی ۵۰۵ و ۸۵۰ جنجل گلستان در این تاریخ به‌دست آمد که هرچه فیلتر هم‌سازی کوچکتر باشد گسترش فیلترهای آنت‌سوزی جنجل گلستان بالاتر خواهد بود. فیلتر هم‌سازی ۵۰۵ به‌دلیل این که بیشتر به جریان اطراف سلولی می‌پردازد دقت بالاتری نسبت به دیگر فیلتر هم‌سازی در انسان برای شبیه‌سازی آنت‌سوزی جنجل در این منطقه بیشتر گردید. همچنین با توجه به تأثیر فضاهای سلولی و فیلترهای هم‌سازی مختلف بر روی

[14] T. Ghaemi Rad, “Review and evaluate different approaches to simulate forest fire

Predicting the Forest Fire Spreading Using a Cellular Automata and an Artificial Neural Network

Parham Pahlavani*, Hamid Reza Sahraiian1, Behnaz Bigdeli3

1- Assistant professor at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
2- MSc student of GIS at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
3- Assistant professor at School of Civil Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

Forests are the most important natural resources of any country that preserving and protecting them has a special important role. Forest fire is one the incidents causing major damages to the forests. Hence, in order to reduce this damage, it is extremely important to determine factors affecting forest fire and to model the spread of fire. In this study, an integration between a multivariate adaptive regression spline (MARS) and a genetic algorithm (GA) has been used to determine factors which have effect on Golestan forest fire. The 9 factors were determined as optimal factors including maximum temperature, average temperature, minimum temperature, dominant wind direction, maximum wind speed, soil, land use, aspect, and distance from residential areas. In combination with cellular automata (CA) and artificial neural network (ANN), Golestan forest fire has been simulated. For examining the effects of the size of the neighborhood filter on the results, various sizes of the neighborhood filter including 3×3, 5×5, and 7×7 have been used. Results showed that the best precision can be achieved for the fire of the study area happened on November 17, 2010 with a 3×3 neighborhood filter and 30 m pixel size. In this situation, the Kappa index, the relative operating characteristic (ROC), and the overall accuracy were equal to 0.890%, 0.917%, and 0.953%, respectively.

Key words: Forest Fire, Genetic Algorithm, Multivariate Adaptive Regression Spline, Cellular Automata, Artificial Neural Network.