[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 4، شماره 4 - ( 12-1395 ) ::
جلد 4 شماره 4 صفحات 103-121 برگشت به فهرست نسخه ها
ترکیب داده‌های لایدار و تصاویر هوایی بر مبنای شبکه‌های عصبی کانولوشن به‌منظور تشخیص مدل ساختمان‌ها
فاطمه علی دوست، حسین عارفی
استادیار دانشگاه تهران
چکیده:   (1268 مشاهده)

ساختمان­ها یکی از مهمترین سازه­های شهری هستند که در کاربردهای مختلف و در نقشه­برداری شهری مورد استفاده قرار می­گیرند. در سال­های اخیر، با توسعه تکنولوژی اخذ داده­ها با توان تفکیک بالا، روش­ها و الگوریتم­های مختلفی به منظور استخراج مدل­های دقیق و بهنگام ساختمان­ها ارائه شده است. در این مقاله، روشی نوین و مدل­مبنا به منظور استخراج ساختمان­ها و شناسایی اتوماتیک مدل سقف آنها از قبیل سقف مسطح، شیروانی، شیبدار و هرمی ارائه شده است که در آن از شبکه­های عصبی با معماری عمیق به منظور یادگیری سلسله مراتبی ویژگی­های استخراج شده از داده­های لایدار و تصاویر ارتوفتو استفاده می­شود. مهمترین مراحل این روش عبارتند از: آموزش مدل و یادگیری، بخش­بندی تصویر، استخراج ویژگی، و برچسب زدن عوارض. کلیه این مراحل در یک ساختار نظارت شده و با استفاده از یک شبکه عصبی کانولوشن که از قبل آموزش دیده شده است، اجرا می­شوند تا یک سیستم تشخیص الگوی اتوماتیک برای تشخیص انواع مختلف ساختمان­ها در یک ناحیه شهری فراهم گردد. در این روش، اطلاعات ارتفاعی، تولیدکننده­ی ویژگی­های هندسی پایدار برای شبکه عصبی کانولوشن هستند که در تعیین موقعیت محدوده هر سقف به کار گرفته می­شوند. شبکه عصبی کانولوشن یکی از انواع شبکه­های عصبی رو به جلو و با مفهوم درک و فهم چندلایه­ای است که شامل تعدادی لایه کانولوشن و نمونه­برداری می­باشد. از آنجایی که در روش پیشنهادی، مجموعه داده­ی آموزشی یک کتابخانه کوچک از مدل­های برچسب­دار است، لذا زمان محاسباتی برای یادگیری با استفاده از مدل­های از قبل آموزش دیده، به طور قابل توجهی کم و در حدود چند ساعت است. نتایج حاصله، نشان­دهنده موثر بودن تلفیق داده­های ارتفاعی و تصاویر رنگی با هم در یادگیری عمیق به منظور استخراج ساختمان­ها و شناسایی مدل سقف آنها به صورت همزمان است به طوری که خطای حد بالای اول و دقت آموزش مدل حاصل از تلفیق این دو دسته داده به ترتیب حدود 05/0 و 95 درصد است. همچنین، میزان موفقیت و صحت شناسایی ساختمان­ها به ترتیب حدود 97 و 69 درصد است.

واژه‌های کلیدی: یادگیری عمیق، شبکه‌ی عصبی کانولوشن، تشخیص الگو، لایدار، مدل سه بعدی ساختمان
متن کامل [PDF 1266 kb]   (443 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: فتوگرامتری
دریافت: ۱۳۹۵/۲/۱۶ | پذیرش: ۱۳۹۵/۷/۱۸ | انتشار: ۱۳۹۶/۱/۱۴
فهرست منابع
1. [1] N. Haala, and C. Brenner, "Extraction of buildings and trees in urban environments", ISPRS Journal of Photogrammetry & Remote Sensing, pp. 130–137, 1999. [DOI:10.1016/S0924-2716(99)00010-6]
2. [2] C. Kim, and A. Habib, "Object-Based Integration of Photogrammetric and LiDAR Data for Automated Generation of Complex Polyhedral Building Models", Journal of Sensors, Vol.9, pp. 5679-5701, 2009. [DOI:10.3390/s90705679]
3. [3] T. T. Vu, F. Yamazaki, M. Matsuok. "Multi-scale solution for building extraction from LiDAR and image data", International Journal of Applied Earth Observation and Geoinformation, pp. 281–289, 2009. [DOI:10.1016/j.jag.2009.03.005]
4. [4] M. Salah, J. Trinder, A. Shaker, "Evaluation of the self‐organizing map classifier for building detection from LiDAR data and multispectral aerial images", Journal of Spatial Science, Vol.54, Issue 2, pp. 15-34, 2009. [DOI:10.1080/14498596.2009.9635176]
5. [5] T. Hermosilla, L. A. Ruiz, J. A. Recio, J. Estornell, "Evaluation of Automatic Building Detection Approaches Combining High Resolution Images and LiDAR Data", Journal of Remote Sensing, Vol.3, Issue 6, pp. 1188-1210, 2011. [DOI:10.3390/rs3061188]
6. [6] G. Q. Zhou, and X. Zhou, "Seamless fusion of LiDAR and aerial imagery for building extraction". IEEE Journal of Transactions on Geoscience and Remote Sensing, Vol.52, No.11, pp. 7393–7407, 2014. [DOI:10.1109/TGRS.2014.2311991]
7. [7] E. Schwalbe, H-G. Maas, F. Seidel, "3D building generation from airborne laser scanner data using 2D GIS data and orthogonal point cloud projections", presented at the ISPRS workshop of laser scanning, the Netherlands, 2005.
8. [8] A. Wichmann, J. Jung, G. Sohn, M. Kada, M. Ehlers, "Integration of building knowledge into binary space partitioning for the reconstruction of regularized building models", presented at ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, France, 2015.
9. [9] G. Sohn, and I. Dowman, "Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction", ISPRS Journal of Photogrammetry & Remote Sensing, Vol.62, pp. 43–63, 2007. [DOI:10.1016/j.isprsjprs.2007.01.001]
10. [10] K. Zhang, Z. Cui, P. A. Houle, "Airborne LiDAR remote sensing and its applications", in Advances in Mapping from Remote Sensor Imagery, Techniques and Applications. X. Yang, and J. Li, CRC Press, 2012. [DOI:10.1201/b13770-3]
11. [11] D. Mongus, N. Lukac, B. Zalik, "Ground and building extraction from LiDAR data based on differential morphological profiles and locally fitted surfaces", ISPRS Journal of Photogrammetry and Remote Sensing, pp. 145–156, 2014. [DOI:10.1016/j.isprsjprs.2013.12.002]
12. [12] E. Maltezos, and C. Ioannidis, "Automatic detection of building points from LiDAR and dense image matching point clouds", presented at ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, France, 2015.
13. [13] B. Yu, H. Liu, J. Wu, Y. Hu, L. Zhang, "Automated derivation of urban building density information using airborne LiDAR data and object-based method", Landscape and Urban Planning, Vol.98, Issue 3-4, pp. 210–219, 2010. [DOI:10.1016/j.landurbplan.2010.08.004]
14. [14] T. Ngo, C. Collet, V., Mazet, "Automatic rectangular building detection from VHR aerial imagery using shadow and image segmentation", presented at IEEE International Conference on Image Processing, 2015.
15. [15] G. Singh, M. Jouppi, Z. Zhang, A. Zakhor, "Shadow Based Building Extraction from Single Satellite Image", In Proceedings of SPIE, the International Society for Optical Engineering, Vol.9401, 2015.
16. [16] L. Matikainen, J. Hyyppä, H., Kaartinen, "Automatic detection of changes from laser scanner and aerial image data for updating building maps", International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol.35, pp. 434–439, 2004.
17. [17] M. Awrangjeb, C. Zhang, C. S. Fraser, "Automatic extraction of building roofs using LIDAR data and multispectral imagery", ISPRS Journal of Photogrammetry and Remote Sensing, Vol.83, pp. 1–18, 2013. [DOI:10.1016/j.isprsjprs.2013.05.006]
18. [18] M. Vakalopoulou, K. Karantzalos, N. Komodakis, N. Paragios, "Building detection in very high resolution multispectral data with deep learning features", IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1873 – 1876, 2015. [DOI:10.1109/IGARSS.2015.7326158]
19. [19] L. Guo, N. Chehata, C. Mallet, S. Boukir, "Relevance of airborne LiDAR and multispectral image data for urban scene classification using Random Forests", ISPRS Journal of Photogrammetry and Remote Sensing, Vol.66, Issue 1, pp. 56–66, 2011. [DOI:10.1016/j.isprsjprs.2010.08.007]
20. [20] K. Karantzalos, P. Koutsourakis, I. Kalisperakis, L. Grammatikopoulos, "Model based building detection from low-cost optical sensors on-board unmanned aerial vehicles", presented at the International Conference on Unmanned Aerial Vehicles in Geomatics, Toronto, Canada, 2015.
21. [21] T. Partovi, T. Krauß, H. Arefi, M. Omidalizarandi, P. Reinartz, "Model-driven 3D building reconstruction based on integration of DSM and spectral information of satellite images", presented at the Geoscience and Remote Sensing Symposium (IGARSS), Quebec, Canada, pp. 3168-3171, 2014.
22. [22] M. Khurana, and V., Wadhwa, "Automatic building detection using modified grab cut algorithm from high resolution satellite image", International Journal of Advanced Research in Computer and Communication Engineering, Vol.4, Issue 8, 2015.
23. [23] T. Liu, S. Fang, Y. Zhao, P. Wang, J. Zhang, "Implementation of training convolutional neural networks", Computer Vision and Pattern Recognition, 2015.
24. [24] J. Deng, W. Dong, R., Socher, L.-J. Li, K. Li, L. Fei-Fei, "Imagenet: A large-scale hierarchical image database", In Proc. CVPR, 2009.
25. [25] Y. Bengio, "Learning Deep Architectures for AI", Foundations and Trends in Machine Learning, Vol.2, Issue 1, pp. 1–127, 2009. [DOI:10.1561/2200000006]
26. [26] M. D. Zeiler, and R. Fergus, "Visualizing and understanding convolutional networks", in Computer Vision, ECCV 2014. Vol.8689 of the series Lecture Notes in Computer Science, pp. 818-833, 2014. [DOI:10.1007/978-3-319-10590-1_53]
27. [27] J. Uijlings, K. van de Sande, T. Gevers, A. Smeulders, "Selective search for object recognition", International Journal of Computer Vision, Vol.104, Issue 2, pp. 154-171, 2013. [DOI:10.1007/s11263-013-0620-5]
28. [28] R. Girshick, J. Donahue, T. Darrell, J. Malik, "Region-based convolutional networks for accurate object detection and semantic segmentation", the IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015.
29. [29] L. A. Alexandre, "3D object recognition using convolutional neural networks with transfer learning between input channels", presented at the 13th International Conference on Intelligent Autonomous Systems, Italy, 2014.
30. [30] J. Yuan, "Automatic Building Extraction in Aerial Scenes Using Convolutional Networks", 2016.
31. [31] Q. Zou, L. Ni, T. Zhang, Q. Wang, "Deep learning based feature selection for remote sensing scene classification", IEEE Geoscience and Remote Sensing Letters, Vol.12, No.11, 2015. [DOI:10.1109/LGRS.2015.2475299]
32. [32] J. Long, E. Shelhamer, T. Darrell, "Fully convolutional networks for semantic segmentation", In Proc. CVPR, 2015. [DOI:10.1109/CVPR.2015.7298965]
33. [33] G. E. Dahl, D. Yu, L. Deng, A. Acero, "Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition", IEEE Transactions on Audio, Speech, and Language Processing, Vol.20, Issue 1, pp. 30–42, 2012. [DOI:10.1109/TASL.2011.2134090]
34. [34] R. Socher, Y. Bengio, C., Manning, "Deep learning for NLP. Tutorial at Association of Computational Logistics (ACL)", 2013, http://www.socher.org/index.php/DeepLearningTutorial.
35. [35] S. Filipe, and L. A. Alexandre, "From the human visual system to the computational models of visual attention: A survey. Artificial Intelligence Review", IEEE Transactions On Geoscience And Remote Sensing, Vol.52, No.11, p.p. 1-47, 2014.
36. [36] S. L. Phung, and A. Bouzerdoum, "MATLAB Library for Convolutional Neural Networks, Technical Report", Visual and Audio Signal Processing Lab, University of Wollongong, 2009.
37. [37] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, "Gradient-based learning applied to document recognition", Proceedings of the IEEE, Vol.86, No.11, 1998. [DOI:10.1109/5.726791]
38. [38] D. S. Maitra, U. Bhattacharya, S. K. Parui, "CNN based common approach to handwritten character recognition of multiple scripts", presented at the 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, 2015. [DOI:10.1109/ICDAR.2015.7333916]
39. [39] Y. Jia, "Caffe: An open source convolutional architecture for fast feature embedding", 2013, http://caffe.berkeleyvision.org/.
40. [40] F. Bastien, P. Lamblin, R. Pascanu, J. I. Bergstra, J. Goodfellow, A. Bergeron, N. Bouchard, Y. Bengio, "Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning", presented at the NIPS Workshop, 2012.
41. [41] A. Vedaldi, and K. Lenc, "MatConvNet: Convolutional Neural Networks for MATLAB", proceeding of the ACM International Conference on Multimedia, 2015, http://www.vlfeat.org/matconvnet/
42. [42] K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, "Return of the devil in the details: Delving deep into convolutional nets", In Proc. BMVC, 2014. [DOI:10.5244/C.28.6]
43. [43] A. Krizhevsky, I. Sutskever, G. E. Hinton, "ImageNet classification with deep convolutional neural networks", NIPS, pp. 1106–1114, 2012.
44. [44] H. Arefi, and P. Reinartz, "Building reconstruction using DSM and orthorectified images", Remote Sensing, pp. 1681-1703, 2013. [DOI:10.3390/rs5041681]
45. [45] Y. Zhang, K. Sohn, R. Villegas, G. Pan, H. Lee, "Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction", presented at IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015. [DOI:10.1109/CVPR.2015.7298621]
ارسال پیام به نویسنده مسئول


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alidoost F, Arefi H. Synergistic Use of LiDAR Data and Aerial Image based on Convolutional Neural Networks for Building Model Recognition. 3. 2017; 4 (4) :103-121
URL: http://jgit.kntu.ac.ir/article-1-278-fa.html

علی دوست فاطمه، عارفی حسین. ترکیب داده‌های لایدار و تصاویر هوایی بر مبنای شبکه‌های عصبی کانولوشن به‌منظور تشخیص مدل ساختمان‌ها. مهندسی فناوری اطلاعات مکانی. 1395; 4 (4) :103-121

URL: http://jgit.kntu.ac.ir/article-1-278-fa.html



دوره 4، شماره 4 - ( 12-1395 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 29 queries by YEKTAWEB 3657