[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 4، شماره 4 - ( 12-1395 ) ::
جلد 4 شماره 4 صفحات 103-121 برگشت به فهرست نسخه ها
ترکیب داده‌های لایدار و تصاویر هوایی بر مبنای شبکه‌های عصبی کانولوشن به‌منظور تشخیص مدل ساختمان‌ها
فاطمه علی دوست ، حسین عارفی
دانشجوی دکترا دانشگاه تهران
چکیده:   (656 مشاهده)

ساختمان­ها یکی از مهمترین سازه­های شهری هستند که در کاربردهای مختلف و در نقشه­برداری شهری مورد استفاده قرار می­گیرند. در سال­های اخیر، با توسعه تکنولوژی اخذ داده­ها با توان تفکیک بالا، روش­ها و الگوریتم­های مختلفی به منظور استخراج مدل­های دقیق و بهنگام ساختمان­ها ارائه شده است. در این مقاله، روشی نوین و مدل­مبنا به منظور استخراج ساختمان­ها و شناسایی اتوماتیک مدل سقف آنها از قبیل سقف مسطح، شیروانی، شیبدار و هرمی ارائه شده است که در آن از شبکه­های عصبی با معماری عمیق به منظور یادگیری سلسله مراتبی ویژگی­های استخراج شده از داده­های لایدار و تصاویر ارتوفتو استفاده می­شود. مهمترین مراحل این روش عبارتند از: آموزش مدل و یادگیری، بخش­بندی تصویر، استخراج ویژگی، و برچسب زدن عوارض. کلیه این مراحل در یک ساختار نظارت شده و با استفاده از یک شبکه عصبی کانولوشن که از قبل آموزش دیده شده است، اجرا می­شوند تا یک سیستم تشخیص الگوی اتوماتیک برای تشخیص انواع مختلف ساختمان­ها در یک ناحیه شهری فراهم گردد. در این روش، اطلاعات ارتفاعی، تولیدکننده­ی ویژگی­های هندسی پایدار برای شبکه عصبی کانولوشن هستند که در تعیین موقعیت محدوده هر سقف به کار گرفته می­شوند. شبکه عصبی کانولوشن یکی از انواع شبکه­های عصبی رو به جلو و با مفهوم درک و فهم چندلایه­ای است که شامل تعدادی لایه کانولوشن و نمونه­برداری می­باشد. از آنجایی که در روش پیشنهادی، مجموعه داده­ی آموزشی یک کتابخانه کوچک از مدل­های برچسب­دار است، لذا زمان محاسباتی برای یادگیری با استفاده از مدل­های از قبل آموزش دیده، به طور قابل توجهی کم و در حدود چند ساعت است. نتایج حاصله، نشان­دهنده موثر بودن تلفیق داده­های ارتفاعی و تصاویر رنگی با هم در یادگیری عمیق به منظور استخراج ساختمان­ها و شناسایی مدل سقف آنها به صورت همزمان است به طوری که خطای حد بالای اول و دقت آموزش مدل حاصل از تلفیق این دو دسته داده به ترتیب حدود 05/0 و 95 درصد است. همچنین، میزان موفقیت و صحت شناسایی ساختمان­ها به ترتیب حدود 97 و 69 درصد است.

واژه‌های کلیدی: یادگیری عمیق، شبکه‌ی عصبی کانولوشن، تشخیص الگو، لایدار، مدل سه بعدی ساختمان
متن کامل [PDF 1266 kb]   (210 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: فتوگرامتری
دریافت: ۱۳۹۵/۲/۱۶ | پذیرش: ۱۳۹۵/۷/۱۸ | انتشار: ۱۳۹۶/۱/۱۴
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alidoost F, Arefi H. Synergistic Use of LiDAR Data and Aerial Image based on Convolutional Neural Networks for Building Model Recognition. 3. 2017; 4 (4) :103-121
URL: http://jgit.kntu.ac.ir/article-1-278-fa.html
علی دوست فاطمه، عارفی حسین. ترکیب داده‌های لایدار و تصاویر هوایی بر مبنای شبکه‌های عصبی کانولوشن به‌منظور تشخیص مدل ساختمان‌ها. مهندسی فناوری اطلاعات مکانی. 1395; 4 (4) :103-121

URL: http://jgit.kntu.ac.ir/article-1-278-fa.html

دوره 4، شماره 4 - ( 12-1395 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.049 seconds with 789 queries by yektaweb 3503