[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 5، شماره 2 - ( 6-1396 ) ::
جلد 5 شماره 2 صفحات 79-98 برگشت به فهرست نسخه ها
ارزیابی روش‌های مختلف تعیین دمای پوشش گیاهی درختان پسته به کمک تصاویر ماهواره‌ای لندست 8
محمدحسن رحیمیان، محمد شایان نژاد ، سعید اسلامیان، رضا جعفری، مهدی قیصری، صالح تقوائیان
دانشگاه صنعتی اصفهان
چکیده:   (765 مشاهده)
یکی از کاربردهای تصاویر ماهواره‌ای، محاسبه دمای سطح زمین (LST) و استفاده وسیع این پارامتر در تخمین دمای هوا (Tair)، تخمین دمای پوشش گیاهی (Tcanopy)، بررسی تاثیر تنش‌های محیطی و مدیریتی بر گیاهان و غیره است. تعیین LST به کمک تصاویر ماهواره‌ای از طریق الگوریتم‌های مختلفی انجام می‌شود که هر یک به تناسب داده‌های موجود و شرایط اقلیمی، دارای مزایا و معایبی هستند. در این پژوهش به منظور تخمین دمای پوشش گیاهی باغات پسته منطقه بهاباد در استان یزد، چهار الگوریتم تعیین دمای سطح شامل MW، IMW، SC و SW به کمک داده‌های ماهواره‌ای لندست 8  و آماربرداری‌های زمینی مورد ارزیابی و مقایسه قرار گرفته‌اند. نتایج این پژوهش نشان داد که اختلاف میانگین دمای سطح محاسباتی توسط الگوریتم‌های مختلف، قابل توجه و در حدود 5/2 درجه سانتیگراد است. همچنین روند مقایسه‌ای دمای سطح محاسبه شده با الگوریتم‌های مختلف، در ماههای مختلف سال متفاوت بوده و نشان‌دهنده اهمیت و نقش بیشتر روش تعیین LST در فصول (مناطق) گرم نسبت به فصول (مناطق) سرد است. علاوه بر این، مشخص شد که دمای سطح زمین (LST) نسبت به دمای هوا (Tair)، پارامتر مناسب‌تری برای تخمین دمای پوشش گیاهی باغات پسته (Tcanopy) است؛ بطوری‌که، معادلات تعیین دمای پوشش گیاهی پسته به کمک LST، خطای کمتر از 1 درجه سانتیگراد دارند. همچنین الگوریتم پنجره‌مجزا (SW)، از دقت بالاتری نسبت به سایر الگوریتم‌های تعیین LST برخوردار بوده و می‌تواند در تعیین دمای پوشش گیاهی باغات پسته استفاده شود.
واژه‌های کلیدی: الگوریتم پنجره‌مجزا، دمای پوشش گیاهی، ترمومتر مادون قرمز، پسته، لندست 8
متن کامل [PDF 1937 kb]   (263 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سیستمهای اطلاعات مکانی (عمومی)
دریافت: ۱۳۹۶/۷/۱۶ | پذیرش: ۱۳۹۶/۷/۱۶ | انتشار: ۱۳۹۶/۷/۱۶
فهرست منابع
1. [1] T. Schmugge, A. French, J. C. Ritchie, A. Rango and H. Pelgrum, "Temperature and emissivity separation from multispectral thermal infrared observations", Remote Sensing of Environment, Vol. 79, pp. 189–198. 2002. [DOI:10.1016/S0034-4257(01)00272-3]
2. [2] J. P. Laguarde, Y. H. Kerr and Y. Brunet, "An experimental study of angular effects on surface temperature for various plant canopies and bare soils", Agricultural and Forest Meteorology, Vol. 77, pp. 16–190, 1995. [DOI:10.1016/0168-1923(95)02260-5]
3. [3] J. A. Sobrino, J. C. Jimenez-munoz, J. El-Kharraz, M. Gomez, M. Romaguera and G. Soria, "Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site", International Journal of Remote sensing, Vol. 25, (1),pp. 215–230, 2004. [DOI:10.1080/0143116031000115210]
4. [4] X. Yu, X. Guo and Z. Wu, "Land surface temperature retrieval from Landsat 8 TIRS - Comparison between radiative transfer equation-based method, split window algorithm and single channel method", International Journal of Remote Sensing, Vol. 6(10), pp. 9829-9852, 2014. [DOI:10.3390/rs6109829]
5. [5] J. R. Irons, J. L. Dwyer, and J. A. Barsi, "The next Landsat satellite: The Landsat Data Continuity Mission", Remote Sensing and Environment Journal, Vol. 122, pp. 11–21, 2012. [DOI:10.1016/j.rse.2011.08.026]
6. [6] F. Wang, Z. Qin, C. Song, L. Tu, A. Karnieli and S. Zhao, "An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data", International Journal of Remote Sensing, Vol. 7, pp. 4268-4289, 2015. [DOI:10.3390/rs70404268]
7. [7] D. A. Quattrochi and J.C. Luvall, "Thermal Remote Sensing in Land Surface Processing", CRC Press: Boca Raton, FL, USA, 2004. [DOI:10.1201/9780203502174]
8. [8] J. D. Kalma, T. R. McVicar and M. F. McCabe, "Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data," Journal of Surveys Geophysics, Vol. 29 (4/5), pp. 421–469, 2008. [DOI:10.1007/s10712-008-9037-z]
9. [9] W. Kustas and M. Anderson, "Advances in thermal infrared remote sensing for land surface modeling", Agricultural Forest Meteorology, Vol. 149 (12), pp. 2071–2081, 2009. [DOI:10.1016/j.agrformet.2009.05.016]
10. [10] J. C. Jiménez-Mu-oz, J. Cristóbal, J. A. Sobrino, G. Sòria, M. Ninyerola, and X. Pons, "Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data", IEEE Transaction of Geosciences in Remote Sensing, Vol. 47(1), pp. 339–349, 2009. [DOI:10.1109/TGRS.2008.2007125]
11. [11] J. C. Jiménez-Mu-oz, J. A. Sobrino, D. Skokovic, C. Mattar, and J. Cristóbal, "Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data", IEEE geosciences and remote sensing letters, Vol. 11(10), pp. 25-37, 2014.
12. [12] J. C. Jimenez-Munoz and J.A. Sobrino, "A generalized single-channel method for retrieving land surface temperature from remote sensing data", Journal of Geophysical Research, Vol. 108 (D22-4688), pp. 1-9 2003.
13. [13] USGS, "Landsat 8 Instruments", Available online: http://landsat.usgs.gov/band_designations_landsat_satellites.php (accessed on 29 Nov. 2016), 2016.
14. [14] J. A. Barsi, J. L. Barker and J. R. Schott, "An Atmospheric Correction Parameter Calculator for a Single Thermal Band Earth-Sensing Instrument", presented at the IGARSS03, Centre de Congres Pierre Baudis, Toulouse, France, 2003. [DOI:10.1109/IGARSS.2003.1294665]
15. [15] J. A. Barsi., J. R. Schott, F. D. Palluconi and S. J. Hook, "Validation of a Web-Based Atmospheric Correction Tool for Single Thermal Band Instruments", Earth Observing Systems, X, Proc. SPIE, San Diego, CA, Vol. 5882, 2005.
16. [16] D. A. Artis and W. H. Carnahan, "Survey of emissivity variability in thermography of urban areas", Remote Sensing of Environment, Vol. 12 (4), pp. 313–329, 1982. [DOI:10.1016/0034-4257(82)90043-8]
17. [17] F. B. Balcik and E. M. Ergene, "Determining the impacts of land cover/use categories on land surface temperature using Landsat8-OLI", presented at The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLI-B8, XXIII ISPRS Congress, Prague, Czech Republic, 2016.
18. [18] R. Leuning, F. M. Kelliher, D. G. G. Pury and E. D. Schulze, "Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies". Journal of Plant Cell Environment, Vol. 18, pp. 1183-1200, 1995. [DOI:10.1111/j.1365-3040.1995.tb00628.x]
19. [19] Z. Qin, A. Karnieli and P. Berliner, "A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region", International Journal of Remote Sensing, Vol. 22, pp. 3719-3746, 2001. [DOI:10.1080/01431160010006971]
20. [20] J. A. Sobrino, Z. L. Li, M. P. Stoll, and F. Becker, "Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data," International Journal of Remote Sensing, Vol. 17(11), pp. 2089–2114, 1996. [DOI:10.1080/01431169608948760]
21. [21] L. Morales-Salinas, J. C. Parra-Aravena, F. Lang-Tasso, R. Abarca-Del Río and E. Jorquera-Fontena, "Simple linear algorithm to estimate the space-time variability of precipitable water in the Araucanía Region, Chile", Journal of Soil Science and Plant Nutrition, Vol. 12, pp. 295–302, 2012. [DOI:10.4067/S0718-95162012000200009]
22. [22] M. Moradizadeh, M. Momeni and M. R. Saradjian, "Estimation of atmospheric column and near surface water vapor content using the radiance values of MODIS", presented at The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B8. Beijing, 2008.
23. [23] J. C. Jiménez-Mu-oz, J. A. Sobrino, D. Skokovic, C. Mattar, and J. Cristóbal, "Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data", IEEE geosciences and remote sensing letters, Vol. 11(10), pp. 25-37, 2014.
24. [24] J. Cristóbal, J. C. Jiménez-Mu-oz, J. A. Sobrino, M. Ninyerola and X. Pons, "Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature", Journal of Geophysics Research, Vol. 114, pp. 91-107, 2009. [DOI:10.1029/2008JD010616]
25. [25] A. Benmecheta, A. Abdellaoui, and A. Hamou, "A comparative study of land surface temperature retrieval methods from remote sensing data", Canadian Journal of Remote Sensing, Vol. 39 (1), pp. 59-73, 2013 [DOI:10.5589/m13-008]
26. [26] M. B. Giannini, O. R. Belfiore, C. Parente and R. Santamaria, "Land Surface Temperature from Landsat 5 TM images: comparison of different methods using airborne thermal data", Journal of Engineering Science and Technology Review, Vol. 8 (3), pp. 83-90, 2015.
27. [27] J. A. Sobrino, J. C. Jimenez-Munoz, G. Soria, M. Romaguera, L. Guanter, J. Moreno, A. Plaza and P. Martinez, "Land surface emissivity retrieval from different VNIR and TIR sensors". IEEE Transaction of Geoscience Remote Sensing, Vol. 46, pp. 316–327, 2008. [DOI:10.1109/TGRS.2007.904834]
28. [28] D. Skokovic, J. A. Sobrino, J. C. Jimenez-Munoz, G. Soria, Y. Julien, C. Mattar and J. Cristobal, "Calibration and Validation of Land Surface Temperature for Landsat 8 TIRS Sensor", presented at Land product Validation and Evolution, ESA/ESRIN Frascati, Italy, 2014.
29. [29] M. S. Latif, "Land Surface Temperature Retrival of Landsat-8 Data Using Split Window Algorithm- A Case Study of Ranchi District", International Journal of Engineering Development and Research, Vol. 2 (4), pp. 23-39, 2014.
30. [30] U. Avdan and G. Jovanovska, "Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data", Hindawi Publishing Corporation, Journal of Sensors, Vol. 2016, Article ID 1480307, P. 8, 2016.
31. [31] Z. L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, B.H. Tang and G. Yan, Land surface emissivity retrieval from satellite data", International Journal of Remote Sensing, Vol 34 (9-10), pp. 3084-3127, 2013. [DOI:10.1080/01431161.2012.716540]
32. [32] E. Rubio, V. Caselles, C. Badenas, 1997, Emissivity measurements of several soils and vegetation types in the 8–14, μm Wave band: Analysis of two field methods, Remote Sensing of Environment, Volume 59, Issue 3, Pages 490-521. [DOI:10.1016/S0034-4257(96)00123-X]
33. [33] H. Ren, C. Du, R. Liu, Q. Qin, G. Yan, Z. L. Li, and J. Meng "Atmospheric water vapor retrieval from Landsat 8 thermal infrared images", Journal of Geophysics Research and Atmosphere, Vol. 120, pp. 81-99, 2015. [DOI:10.1002/2014JD022619]
34. [34] O. Rozenstein, Z. Qin, Y. Derimian and A. Karnieli, "Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm", Sensors, Vol. 14, pp. 5768-5780, 2014. [DOI:10.3390/s140405768]
ارسال پیام به نویسنده مسئول


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

shayannejad M. Evaluation of different LST approaches for determination of pistachio tree canopy temperature through Landsat 8 satellite data . 3. 2017; 5 (2) :79-98
URL: http://jgit.kntu.ac.ir/article-1-470-fa.html

رحیمیان محمدحسن، شایان نژاد محمد، اسلامیان سعید، جعفری رضا، قیصری مهدی، تقوائیان صالح. ارزیابی روش‌های مختلف تعیین دمای پوشش گیاهی درختان پسته به کمک تصاویر ماهواره‌ای لندست 8. مهندسی فناوری اطلاعات مکانی. 1396; 5 (2) :79-98

URL: http://jgit.kntu.ac.ir/article-1-470-fa.html



دوره 5، شماره 2 - ( 6-1396 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.06 seconds with 29 queries by YEKTAWEB 3638