:: دوره 9، شماره 4 - ( 12-1400 ) ::
جلد 9 شماره 4 صفحات 18-1 برگشت به فهرست نسخه ها
ارائه روشی نوین به منظور حذف نویز از ابر نقطه سه‌بعدی، به کمک خوشه بندی به روش انتقال میانگین
سحر کمالو، محمدجواد ولدان زوج*، علی حسینی نوه، فهیمه یوسفی
دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده:   (1112 مشاهده)
ابرنقطه­ خام معمولا شامل نویز و نقاط پرت است، بنابراین چالش­هایی برای مدل­سازی و شبکه­بندی سطوح با استفاده از این داده­های سه­بعدی وجود خواهد­ داشت. همچنین حفظ جزئیات، در حین حذف نویز ضروری است. روش­های زیادی بمنظور حذف نویز از ابر نقطه، توسعه یافته­اند اما تنها تعداد کمی از آنها برای حفظ جزئیات در حین حذف نویز مناسب­اند. این مقاله، سعی بر ارائه­ یک روش حذف نویز آماری نوین، با قابلیت حفظ جزئیات را دارد. در روش پیشنهادی ارائه­ شده، ابتدا ابرنقطه با بکارگیری روش انتقال­میانگین خوشه­بندی می­شود و ازآنجایی­که نتیجه خوشه­بندی به اندازه­ پنجره­ جستجو بستگی دارد، اندازه بهینه­ این پنجره از طریق روش بهینه­سازی تپه­نوردی، محاسبه می­گردد. سپس در هر خوشه، فاصله بین هر نقطه با میانگین سایر نقاط آن خوشه محاسبه و با حدآستانه گذاری روی این فواصل و تعداد اعضای هر خوشه، نقاط نویز­ شناسایی و با حفظ جزئیات مانند لبه­ها، حذف می­شوند. نتایج تجربی حاصل از پیاده­سازی روش­ پیشنهادی بر روی سه دسته داده­ سه­بعدی تهیه شده توسط لیزراسکنر، نشان می­دهد که این روش نسبت به روش­ مشابه مطرح شده در پیشینه تحقیق از بهبود دقتی بالغ بر 1 درصد در ضریب صحیح بودن، 13 درصد در ضریب کامل بودن و 5/12 درصد در ضریب کیفیت، برخوردار بوده است.
واژه‌های کلیدی: کلمات کلیدی: ابرنقطه، حذف نویز، جزئیات، خوشه‌بندی، بهینه‌سازی، حدآستانه‌گذاری
متن کامل [PDF 1215 kb]   (292 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فتوگرامتری
دریافت: 1397/9/17 | پذیرش: 1397/11/27 | انتشار الکترونیک پیش از انتشار نهایی: 1400/10/11 | انتشار: 1400/12/16
فهرست منابع
1. [1] Levin, D, "The approximation power of moving least-squares", Mathematics of Computation of the American Mathematical Society, 67(224), pp.1517-1531, 1998. [DOI:10.1090/S0025-5718-98-00974-0]
2. [2] Tomasi, C, and Manduchi, R. January, "Bilateral filtering for gray and color images", In Computer Vision, Sixth International Conference on (pp. 839-846), IEEE, 1998.
3. [3] Schall, O., Belyaev, A, and Seidel, H.P. June, "Robust filtering of noisy scattered point data", In Point-Based Graphics, Eurographics/IEEE VGTC Symposium Proceedings (pp. 71-144), 2005. [DOI:10.1109/PBG.2005.194067]
4. [4] Narváez, E.A.L. and Narváez, N.E.L., "Point cloud denoising using robust principal component analysis", In GRAPP (pp. 51-58), 2005 February.
5. [5] Sun, Y., Schaefer, S. and Wang, W., "Denoising point sets via L0 minimization", Computer Aided Geometric Design, 35, pp.2-15, 2015. [DOI:10.1016/j.cagd.2015.03.011]
6. [6] Han, X.F., Jin, J.S., Wang, M.J., Jiang, W., Gao, L. and Xiao, L, "A review of algorithms for filtering the 3D point cloud", Signal Processing: Image Communication, 57, pp.103-112, 2017. [DOI:10.1016/j.image.2017.05.009]
7. [7] Deschaud, Jean-Emmanuel, and François Goulette, "Point cloud non local denoising using local surface descriptor similarity", IAPRS 38, no. 3A 109-114, 2010.
8. [8] Rosli, N.A.I.M. and Ramli, A., July, "Mapping bootstrap error for bilateral smoothing on point set", In AIP Conference Proceedings (Vol. 1605, No. 1, pp. 149-154). AIP, 2014. [DOI:10.1063/1.4887580]
9. [9] Miropolsky, A. and Fischer, A., June, "Reconstruction with 3D geometric bilateral filter", In Proceedings of the ninth ACM symposium on Solid modeling and applications (pp. 225-229). Eurographics Association., 2004.
10. [10] Wolff, Katja, et al, "Point cloud noise and outlier removal for image-based 3D reconstruction", 3D Vision (3DV), Fourth International Conference on. IEEE, 2016. [DOI:10.1109/3DV.2016.20]
11. [11] Xu, Li, Cewu Lu, Yi Xu, and Jiaya Jia, "Image smoothing via L 0 gradient minimization", In ACM Transactions on Graphics (TOG), vol. 30, no. 6, p. 174. ACM, 2011. [DOI:10.1145/2070781.2024208]
12. [12] Orts-Escolano, Sergio, Jose Garcia-Rodriguez, Vicente Morell, Miguel Cazorla, Jose Antonio Serra Perez, and Alberto Garcia-Garcia, "3D surface reconstruction of noisy point clouds using growing neural gas: 3D object/scene reconstruction", Neural Processing Letters 43, no. 2 : 401-423, 2016. [DOI:10.1007/s11063-015-9421-x]
13. [13] Choudhury, Prasun, and J. Tumbilin, "The trilateral filterfor high contrast images and meshes", In Proceedings of theEurographics Symposium on Rendering, 2003.
14. [14] Wang, Ren-fang, Wen-zhi Chen, San-yuan Zhang, Yin Zhang, and Xiu-zi Ye, "Similarity-based denoising of point-sampled surfaces", Journal of Zhejiang University-Science A 9, no. 6 : 807-815, 2008. [DOI:10.1631/jzus.A071465]
15. [15] Yoshizawa, Shin, Alexander Belyaev, and H-P. Seidel, "Smoothing by example: Mesh denoising by averaging with similarity-based weights", In Shape Modeling and Applications, 2006. SMI 2006. IEEE International Conference on, pp. 9-9. IEEE, 2006.
16. [16] Fleishman, Shachar, Daniel Cohen-Or, and Cláudio T. Silva, "Robust moving least-squares fitting with sharp features", In ACM transactions on graphics (TOG), vol. 24, no. 3, pp. 544-552. ACM, 2005. [DOI:10.1145/1073204.1073227]
17. [17] Taubin, Gabriel, "A signal processing approach to fair surface design", In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pp. 351-358. ACM, 1995. [DOI:10.1145/218380.218473]
18. [18] Pauly, Mark, and Markus Gross, "Spectral processing of point-sampled geometry", In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pp. 379-386. ACM, 2001. [DOI:10.1145/383259.383301]
19. [19] Rosman, Guy, Anastasia Dubrovina, and Ron Kimmel, "Patch‐Collaborative Spectral Point‐Cloud Denoising", In Computer Graphics Forum, vol. 32, no. 8, pp. 1-12, 2013. [DOI:10.1111/cgf.12139]
20. [20] Chen, H. and Bhanu, B, "3D free-form object recognition in range images using local surface patches", Pattern Recognition Letters, 28(10), pp.1252-1262, 2007. [DOI:10.1016/j.patrec.2007.02.009]
21. [21] Sun, J., Ovsjanikov, M. and Guibas, L. July, "A concise and provably informative multi‐scale signature based on heat diffusion", In Computer graphics forum (Vol. 28, No. 5, pp. 1383-1392). Blackwell Publishing Ltd, 2009. [DOI:10.1111/j.1467-8659.2009.01515.x]
22. [22] Thibault, W.C. and Naylor, B.F. August, "Set operations on polyhedra using binary space partitioning trees", In ACM SIGGRAPH computer graphics (Vol. 21, No. 4, pp. 153-162). ACM, 1987. [DOI:10.1145/37402.37421]
23. [23] Foley, T. and Sugerman, J, July, "KD-tree acceleration structures for a GPU raytracer", In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware (pp. 15-22). ACM, 2005. [DOI:10.1145/1071866.1071869]
24. [24] Samet, H, "The quadtree and related hierarchical data structures", ACM Computing Surveys (CSUR), 16(2), pp.187-260, 1984. [DOI:10.1145/356924.356930]
25. [25] Digne, Julie, "Similarity based filtering of point clouds", Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on. IEEE, 2012. [DOI:10.1109/CVPRW.2012.6238917]
26. [26] Zaman, Faisal, Ya Ping Wong, and Boon Yian Ng, "Density-Based Denoising of Point Cloud", 9th International Conference on Robotic, Vision, Signal Processing and Power Applications. Springer, Singapore, 2017. [DOI:10.1007/978-981-10-1721-6_31]
27. [27] Comaniciu, Dorin, and Peter Meer, "Mean shift: A robust approach toward feature space analysis", IEEE Transactions on pattern analysis and machine intelligence 24.5 : 603-619, 2002. [DOI:10.1109/34.1000236]
28. [28] Renders, J-M., and Hugues Bersini, "Hybridizing genetic algorithms with hill-climbing methods for global optimization: two possible ways", Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on. IEEE, 1994.
29. [29] Duong, T., Hazelton, M.L, "Convergence rates for unconstrained bandwidth matrix selectors in multivariate kernel density estimation", Journal of Multivariate Analysis 93(2), 417{433, 2005. [DOI:10.1016/j.jmva.2004.04.004]
30. [30] Guidoum, A.C, "Kernel estimator and bandwidth selection for density and its derivatives", 2013.
31. [31] Hyndman, R.L., Zhang, X., King, M.L, "Bandwidth selection for multivariate kernel density estimation using mcmc", In: Econometric Society 2004 Australasian Meetings. No. 120, Econometric Society, 2004.
32. [32] Zhang, X., King, M.L., Hyndman, R.J, "A bayesian approach to bandwidth selection for multivariate kernel density estimation", Computational Statistics & Data Analysis 50(11), 3009{3031, 2006. [DOI:10.1016/j.csda.2005.06.019]
33. [33] Cawley, Gavin C., and Nicola LC Talbot, "Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers", Pattern Recognition 36.11 : 2585-2592, 2003. [DOI:10.1016/S0031-3203(03)00136-5]
34. [34] Weinmann, Martin, Boris Jutzi, and Clément Mallet, "Semantic 3D scene interpretation: a framework combining optimal neighborhood size selection with relevant features", ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2.3: 181, 2014. [DOI:10.5194/isprsannals-II-3-181-2014]
35. [35] Demantk'e, J., Mallet, C., David, N. and Vallet, B, "Dimensionality based scale selection in 3D lidar point clouds", The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII, Part 5/W12, pp. 97-102, 2011. [DOI:10.5194/isprsarchives-XXXVIII-5-W12-97-2011]
36. [36] Keller, James M., Michael R. Gray, and James A. Givens, "A fuzzy k-nearest neighbor algorithm", IEEE transactions on systems, man, and cybernetics 4 : 580-585, 1985. [DOI:10.1109/TSMC.1985.6313426]
37. [37] Taubin G, "A signal processing approach to fair surface design", Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, New York, USA, pp. 351-358, 1995. [DOI:10.1145/218380.218473]
38. [38] Clarenz U, Rumpf M, Telea A, "Fairing of point based surfaces", Proceedings of Computer Graphics International, Crete, pp. 600-603. June, 2004.
39. [39]http://pointclouds.org/documentation/tutorials/statistical_outlier.php.
40. [40]http://graphics.stanford.edu/data/3dscanrep/.
41. [41] Akyay, T.O.L.G.A, "Wavelet-based outlier detection and denoising of airborne laser scanning data", Middle East Technical University, Master thesis, Ankara, Turkey, 2008.
42. [42] Khoshelham, K. and Altundag, D, "Wavelet de-noising of terrestrial laser scanner data for the characterization of rock surface roughness", Optical and Laser Remote Sensing. Retrieved from http://www. isprs. Org, 2010.
43. [43] Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M. and Beetz, M, "Towards 3D point cloud based object maps for household environments", Robotics and Autonomous Systems, 56(11), pp.927-941, 2008. [DOI:10.1016/j.robot.2008.08.005]



XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 9، شماره 4 - ( 12-1400 ) برگشت به فهرست نسخه ها