1. [1] N. S. Altman and M. Krzywiski, "Points of Significance: Association, correlation and causation," Nature methods, vol. 12, pp. 899-900, 2015. [ DOI:10.1038/nmeth.3587] 2. [2] M. Khoshmanesh and M. Mashhadi Hossainali, "Constraints on a geodetic time transfer network in Iran," Arabian Journal of Geosciences, 2013. [ DOI:10.1007/s12517-013-1059-2] 3. [3] M. Rothacher, "Orbits of Satellite Systems in Space Geodesy," Geod.-Geophys. Arb. Schweiz,, vol. 46, 1992. 4. [4] M. Rothacher, T. A. Springer, S. Schaer, and G. Beutler, "Processing Strategies for Regional GPS Networks," presented at the IAG General Assembly in Rio, Rio, 1997. [ DOI:10.1007/978-3-662-03714-0_14] 5. [5] M. Meindl, S. Schaer, U. Hugentobler, and G. Beutler, "Tropospheric Gradient Estimation at CODE: Results from Global Solutions, in Applications of GPS Remote Sensing to Meteorology and Related Fields, ," Journal of the Meteorological Society of Japan, vol. 82(1B), pp. 331-338, 2004. [ DOI:10.2151/jmsj.2004.331] 6. [6] G. Xu., GPS Theory, Algorithms and Applications, 2nd ed.: Springer, 2007. 7. [7] M. Meindl, S. Schaer, U. Hugentobler, and G. Beutler., "Tropospheric gradient estimation at code: Results from global solutions " Journal of the Meteorological Society of Japan, vol. 82 (1B), pp. 331-338. [ DOI:10.2151/jmsj.2004.331] 8. [8] S. Petrović, "Maximal Correlation Adjustment in Physical Geodesy," Berlin, Heidelberg, 1993, pp. 242-245. [ DOI:10.1007/978-3-642-78149-0_57] 9. [9] G. O. Jerez and D. B. M. Alves, "Generation and Performance Analysis of GPS and GLONASS Virtual Data for Positioning Under Different Ionospheric Conditions," Boletim de Ciências Geodésicas, vol. 25, 2019. [ DOI:10.1590/s1982-21702019000200007] 10. [10] G. U. Yule and M. G. Kendall, An introduction to the theory of statistics, 14th ed., 5th impression ed. New York: Hafner Publishing Company, 1968. 11. [11] M. G. Kendall, Rank Correlation Methods, 4th ed.: London Griffin, 1970. 12. [12] P. Embrechts, A. J. McNeil, and D. Straumann, "Correlation: Pitfalls and alternatives," Risk, vol. 12, pp. 69-71, 1999. 13. [13] A. Sklar, "Fonctions de repartition a n dimensions et leurs marges," de l'Institut de Statistique de l'Universite de Paris, vol. 8, pp. 229-231, 1959. 14. [14] S. Daul, E. D. Giorgi, F. Lindskog, and A. J. McNeil, "The grouped t-copula with an application to credit risk," vol. 16, pp. 73-76, 2003. [ DOI:10.2139/ssrn.1358956] 15. [15] D. H. Oh and A. J. Patton, "Modelling dependence in high dimensions with factor copulas," Journal of Business and Economic Statistics, 2015. 16. [16] G. Mercier, G. Moser, and S. Serpico, "Conditional Copula for change detection on heterogeneous SAR data," Barcelona, Spain, 2007. [ DOI:10.1109/IGARSS.2007.4423324] 17. [17] A. Sundaresan. and P. K. Varshney, "Location estimation of a random signal source based on correlated sensor observations," IEEE Trans. Signal Process., vol. 59, pp. 787-799, 2011. [ DOI:10.1109/TSP.2010.2084084] 18. [18] A. Sundaresan, P. K. Varshney, and N. S. V. Rao, "Copula-based fusion of correlated decisions," IEEE Trans. Aerosp. Electron . Syst., vol. 47, pp. 454-471, 2011. [ DOI:10.1109/TAES.2011.5705686] 19. [19] S. Iyengar, P. K. Varshney, and T. Damarla, "A parametric copula based framework for hypotheses testing using heterogeneous data," IEEE Transactions on Signal Processing, vol. 59, pp. 2308 - 2319, 2011. [ DOI:10.1109/TSP.2011.2105483] 20. [20] A. Subramanian, A. Sundaresan., and K. Varshney, "Fusion for the detection of dependent signals using multivariate Copulas," in Proceedings of the 14th International Conference, Chicago, IL, 2011, pp. 1-8. 21. [21] A. Ba'rdossy and J. Li, "Geostatistical interpolation using copulas," WATER RESOURCES RESEARCH vol. 44, 2008. [ DOI:10.1029/2007WR006115] 22. [22] G. Mercier, S. Derrode, W. Pieczynski, J. Nicolas, A. Joannic-Chardin, and J. Inglada, "Copula-based Stochastic Kernels for Abrupt Change Detection," in International Geoscience and Remote Sensing Symposium (IGARSS), 2006. [ DOI:10.1109/IGARSS.2006.57] 23. [23] N. Brunel and W. Pieczynski, "Unsupervised signal restoration using hidden Markov chains with Copulas.," Signal Processing, vol. 85, pp. 2304-2315, 2005. [ DOI:10.1016/j.sigpro.2005.01.018] 24. [24] N. Brunel, W. Pieczynski, and S. Derrode, "Copulas in vectorial hidden markov chains for multicomponent image segmentation,," presented at the ICASSP'05, Philadelphia, USA,, 2005. 25. [25] S. Vogl, P. Laux, W. Qiu, G. Mao, and H. Kunstmann, "Copula-based assimilation of radar and gauge information to derive bias-corrected precipitation fields.," Hydrol. Earth Syst. Sci. , vol. 16, pp. 2311-2328, 2012. [ DOI:10.5194/hess-16-2311-2012] 26. [26] L. Neppel, N. Pujol, and R. Sabatier, "A multivariate regional test for detection of trends in extreme rainfall: the case of extreme daily rainfall in the French Mediterranean area," Advances in Geosciences, vol. 26, pp. 145-148, 2011. [ DOI:10.5194/adgeo-26-145-2011] 27. [27] S. Modiri, "Copula-based analysis of correlation structures in case of GRACE coefficients," Master, Geodesy, Stuttgart, 2015. 28. [28] S. Modiri, S. Belda, R. Heinkelmann, M. Hoseini, J. M. Ferrándiz, and H. Schuh, "Polar motion prediction using the combination of SSA and Copula‑based analysis," Earth, Planets and Space, vol. 70, 2018. [ DOI:10.1186/s40623-018-0888-3] 29. [29] R. B. Nelsen, An introduction to Copulas, 2nd ed. Berlin: Springer-Verlag, 2006. 30. [30] J. Rank, Copulas: From Theory to Application in Finance: Wiley, 2007. 31. [31] Aas. K., "Modelling the dependence structure of financial assets: Asurvay of four copulas," SAMBA/22/04, 2004. 32. [32] P. Embrechts, F. Lindskog, and A. McNeil, "Modelling dependence with copulas and applications to risk management.," in Handbook of Heavy Tailed Distributions in Finance, S. Rachev, Ed., ed: Elsevier, 2003. [ DOI:10.1016/B978-044450896-6.50010-8] 33. [33] C. Genest and L. Rivest, "Statistical Inference Procedures for Archimedean Copulas," Journal of the American Statistical Association, vol. 88, pp. 1034-1043, 1993. [ DOI:10.1080/01621459.1993.10476372] 34. [34] U. Cherubini, E. Luciano, and W. Vecchiato, Copula methods in finance. England: Wiley, 2004. [ DOI:10.1002/9781118673331] 35. [35] F. Durante and C. Sempi, "Copula Theory: An Introduction," in Copula Theory and its Applications. vol. 198, F. Durante, W. H. ardle, P. Jaworski, and T. Rychlik, Eds., ed: Springer, 2010, pp. 3-31. [ DOI:10.1007/978-3-642-12465-5_1] 36. [36] C. Genest, K. Ghoudi, and L. P. Rivest, "A semiparametric estimation procedure of dependence parameters in multivariate families of distributions.," Biometrika, vol. 82, pp. 543-552, 1995. [ DOI:10.1093/biomet/82.3.543] 37. [37] C. Topcu, "Comparison of some selection criteria for selecting bivariate Archimedean Copulas," AKU-J. Sci. Eng., vol. 16, pp. 250-255, 2016. [ DOI:10.5578/fmbd.27971] 38. [38] A. Dias and P. Embrechts, "Dynamic Copula Models for Multivariate High Frequency Data in Finance," Quantitative Finance, vol. 3, pp. 1-16, 2004. [ DOI:10.1080/713666155] 39. [39] H. Parra Palaro and L. Koodi Hotta, "Using Conditional Copula to Estimate Value at Risk," Journal of Data Science, vol. 4, pp. 93-115, 2006. [ DOI:10.6339/JDS.2006.04(1).226] 40. [40] R. Ghoddousi-Fard, "Modelling tropospheric gradients and parameters from NWP models: Effects on GPS estimates.," PhD, Department of Geodesy and Geomatics Engineering, University of New Brunswick, 2009.
|