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"Deep Convolutional Neural Network
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ABatch Normalization(BN)
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'Fully Convolutional Network (FCN)
"Channel Attention

"Spatial Attention

*Residual densely connected blocks

“Residual Dilated Convolution Modules


http://dx.doi.org/10.61186/jgit.12.1.83
http://jgit.kntu.ac.ir/article-1-937-en.html

[ Downloaded from jgit.kntu.ac.ir on 2026-02-01 ]

[ DOI: 10.61186/git.12.1.83]

Ohor 3l ISt a8 iome Oldas g5 90 ) s
bl A s st gla il e & hes
QS oo el Slwlxe

2 Cewloads ools ylis (V) S ;0 SCB o Ll
ez aY SO el cgolgainy 4l ;0 SCB
S g PV SUSey BB stomy 4Y G WY oges
) 00,8 homn 40Y SO A eeies Hsbay
595 slarg > oS 5 sl ReLU jloJlb &
Sl i Bladl Oldes «olys [0 ¢ aisS o oolaiu!
B9 o osliiwl Y aw pl sla >g,5 pleol
s=b Slilas 4 adlie cpl jo solpiiny 4SS (o
"(FEB) 559 yial38 S L SCB slaS sl ye
A2 39 1) Se la The b ol oo ool 41,3
1y S Sledbl FEB a8 coul o1 jol ol Lo
= B Sy 9w co Luli8l Al 4yl slaay
yebdan a5 Cosloads LSid oS Bes b sy Sl
g 0S5 oo Bai> ) ol whav sl Sy 2y LB
S Sl ol ams e adl)l ass bl o 1) Loy
ool ! JUE VP iSlas G b o -dglgils oo
Lrvlate, o Jolas a0 1) aSicts sl el )b g 0iS oo

ADepthwise Convolution
Pointwise Convolution
VStrided Convolution

V'Feature Enhancement Block (FEB)

S0 Slelbl (59ld | wdigo — pole oy pdis

1 Eol lgs @ Caun 0 jlouds @ s jlgy Jlw

sloa i olal zals o' —zals g)ls daiges
S DMl (g5lusl (gl 5 oS oo osliul (S
&3 masiged Slodes sl ol (295 s 5
Sle S adg Bue Ly jsesl Lo ayl58)
a3 e bloass ol gl asles oo eolatul 5 0L
Toolgily sla(iiglgils’ (goguzme slass 5l ¢ Slslna
a9 b ogd go oolatuwl Liuli8l 6l paiges aig, 4o
B poiype oline (galashd glaasl 4l o
it (35 GBigel BB glo el sl 5 st
610 maiged 5l Bhod (il po olgiiny A
GialS 4 a s aS e eslii ol 68 e b otyl58l
Slass (alS aoel )0 5 0S o ST A Bes
il ssaline jslaie a4y o)ls ol e a1 Lo jial )y
dmlio ;o golering Joo LS ookt Coz )l
DeepLabV3+ 4 D-LinkNet (U-Net sla s loss b
PP (5

Ol b9, -V

2O G (0 eolepiin 0,0, (S LSl
S bl aSlls ool casload ools oylas (V) S
555 e JSP(SCB) il (st S5 L,
oealS Gaa Ly guass ol (o eolaiulsge (o551l
slaa¥ jloslavl S Slwlrs sloay e
SSE B (om sleany § (s (iom
(o9l (—izmm slaa¥ sl eslaisl Jdo all e
2 S sla Sy S slp 4l il
L 5SS B (domn Lol ol (63959

‘Down-sampling

"Up-sampling

"Transposed Convolutions

‘Shallow Upsampling

“Specialized Convolution Blocks (SCB)
*General Convolutions

Separable Convolution
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Abstract

Road extraction from high-resolution remote sensing images has been used in a wide range of applications
such as traffic management, route planning, and road navigation. Due to their long length and small width, as
well as shadows caused by vegetation and buildings, the detection of the roads challenging. As the roads In an
area are of different types such as being near short passages, highways and motorways, we face some
difficulties in automatic classifying and recognizing different kinds of roads. In order to improve the reliability
and accuracy of extraction of the roads with shorter lengths when there are roads of different sizes; a neural
network model is proposed in this paper that achieves pixel-accurate segmentation. The proposed network
directly processes the input image and uses four specialized convolutional blocks (SCB) during down-sampling
which is complemented by a shallow sampling approach to generate a binary mask for the road class. As the
common semantic segmentation networks are deep and have various teachable parameters, the proposed
network in this research uses shallow sampling which leads to lessen the network depth and as a result the
number of the parameters decreases. The performance of the proposed model in this research was evaluated
using the Massachusetts dataset, and the evaluation results clearly show the superior performance of the
proposed model compared to the other neural networks with fewer parameters. Compared to the other neural
networks such as DEEPLAB3+, U_NET and D_LINKNET, the proposed model was able to improve the IOU

and F-Score indices in Massachusetts dataset by 1.98 and 3.03, respectively.
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