[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 9، شماره 1 - ( 4-1400 ) ::
جلد 9 شماره 1 صفحات 104-85 برگشت به فهرست نسخه ها
مکان‌یابی و تخصیص نیروگاه های بادی در شبکه فشار متوسط برق با لحاظ کردن فاکتورهای محیطی، اقتصادی و فنی
مینا صادقی*، محمد کریمی
دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده:   (304 مشاهده)
افزایش تقاضای برق و به دنبال آن تهی شدن منابع سنتی تولید برق و همچنین تأثیرات مخرب استفاده از سوخت‌های فسیلی بر محیط‌زیست، موجب پدید آمدن ضرورت استفاده از انرژی‌های تجدید پذیر برای تولید برق شده است. ایران دارای پتانسیل بالا برای بهره‌برداری از انرژی بادی است. به منظور بهره‌برداری از این پتانسیل، نیاز به مکان‌یابی صحیح محل نصب نیروگاه‌های بادی است. هدف از انجام این تحقیق، ارائه یک روش جهت تعیین مکان‌های مناسب برای احداث نیروگاه بادی با استفاده از تحلیل‌های مکانی، انتخاب بهترین مکان‌ها با استفاده از الگوریتم ژنتیک و تخصیص آن‌ها در شبکه فشار متوسط برق است. در گام اول تحقیق، اهداف و فاکتورهای مؤثر شناسایی و با استفاده از روش تحلیل سلسله مراتبی، وزن دهی شده و مجموعه نقشه‌های فاکتور در سیستم اطلاعات مکانی ترکیب و مناطق مناسب برای احداث مزرعه بادی تعیین شدند. در گام دوم، به منظور کاهش گزینه‌های مستعد، با استفاده از الگوریتم بهینه‌سازی ژنتیک و تعریف اهداف کاهش تلفات خط، افزایش تناسب محیطی و افزایش میزان بار قابل تأمین توسط پست برق مربوطه، فرآیند تخصیص در شبکه فشار متوسط برق انجام گرفت. این تحقیق در استان قزوین پیاده‌سازی شد و پس از انجام فرآیند مکان‌یابی، 30 گزینه تعیین و سپس فرآیند تخصیص در 13 سناریو انجام شد. در هر یک از سناریوهای فوق، مکان احداث مجموعه نیروگاه‌های بادی مورد نیاز در شبکه فشار متوسط برق تعیین و تخصیص آن به بهترین پست‌های برق تعریف شد. خروجی‌ها نشان می‌دهند که مناطق شمال غربی استان قزوین دارای پتانسیل برای ساخت مزرعه بادی است.
واژه‌های کلیدی: نیروگاه بادی، روش وزن‌دهی، سیستم اطلاعات مکانی، مکان‌یابی، ژنتیک.
متن کامل [PDF 2511 kb]   (110 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سیستمهای اطلاعات مکانی (عمومی)
دریافت: 1398/2/4 | پذیرش: 1398/9/19 | انتشار: 1400/4/31
فهرست منابع
1. [1] A. Asakereh, M. Soleymani, and M. J. Sheikhdavoodi, "A GIS-based Fuzzy-AHP method for the evaluation of solar farms locations: Case study in Khuzestan province, Iran," Solar Energy, vol. 155, pp. 342-353, 2017. [DOI:10.1016/j.solener.2017.05.075]
2. [2] P. Dondi, D. Bayoumi, C. Haederli, D. Julian, and M. Suter, "Network integration of distributed power generation," Journal of power sources, vol. 106, no. 1-2, pp. 1-9, 2002. [DOI:10.1016/S0378-7753(01)01031-X]
3. [3] R. Prenc, D. Škrlec, and V. Komen, "Distributed generation allocation based on average daily load and power production curves," International journal of electrical power & energy systems, vol. 53, pp. 612-622, 2013. [DOI:10.1016/j.ijepes.2013.05.033]
4. [4] Z. Abdmouleh, A. Gastli, L. Ben-Brahim, M. Haouari, and N. A. Al-Emadi, "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, vol. 113, pp. 266-280, 2017. [DOI:10.1016/j.renene.2017.05.087]
5. [5] A. Konak, D. W. Coit, and A. E. Smith, "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering & System Safety, vol. 91, no. 9, pp. 992-1007, 2006. [DOI:10.1016/j.ress.2005.11.018]
6. [6] H. M. Prasanna, M. L. Kumar, and T. Ananthapadmanabha, "Genetic algorithm based optimal allocation of a distributed generator in a radial distribution feeder," in Circuit, Power and Computing Technologies (ICCPCT), 2014 International Conference on, 2014: IEEE, pp. 184-190.
7. [7] C. L. Borges and D. M. Falcao, "Optimal distributed generation allocation for reliability, losses, and voltage improvement," International Journal of Electrical Power & Energy Systems, vol. 28, no. 6, pp. 413-420, 2006. [DOI:10.1016/j.ijepes.2006.02.003]
8. [8] Y. Alinejad-Beromi, M. Sedighizadeh, M. Bayat, and M. Khodayar, "Using genetic alghoritm for distributed generation allocation to reduce losses and improve voltage profile," in Universities Power Engineering Conference, 2007. UPEC 2007. 42nd International, 2007: IEEE, pp. 954-959. [DOI:10.1109/UPEC.2007.4469077]
9. [9] H. E. Talaat and E. Al-Ammar, "Optimal allocation and sizing of Distributed Generation in distribution networks using Genetic Algorithms," in Electrical Power Quality and Utilisation (EPQU), 2011 11th International Conference on, 2011: IEEE, pp. 1-6. [DOI:10.1109/EPQU.2011.6128840]
10. [10] M. H. Moradi and M. Abedini, "A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems," International Journal of Electrical Power & Energy Systems, vol. 34, no. 1, pp. 66-74, 2012. [DOI:10.1016/j.ijepes.2011.08.023]
11. [11] S. Busam, S. Hota, G. N. Kumar, and R. S. K. Naidu, "Multiobjective optimization of radial distribution system with multiple distributed generation units using genetic algorithm," in 2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO), 2015. [DOI:10.1109/EESCO.2015.7254060]
12. [12] G. Celli and F. Pilo, "Optimal distributed generation allocation in MV distribution networks," in Power Industry Computer Applications, 2001. PICA 2001. Innovative Computing for Power-Electric Energy Meets the Market. 22nd IEEE Power Engineering Society International Conference on, 2001: IEEE, pp. 81-86.
13. [13] D. Latinopoulos and K. Kechagia, "A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece," Renewable Energy, vol. 78, pp. 550-560, 2015. [DOI:10.1016/j.renene.2015.01.041]
14. [14] M. A. Anwarzai and K. Nagasaka, "Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis," Renewable and Sustainable Energy Reviews, 2016. [DOI:10.1016/j.rser.2016.12.048]
15. [15] M. Zoghi, A. H. Ehsani, M. Sadat, M. javad Amiri, and S. Karimi, "Optimization solar site selection by fuzzy logic model and weighted linear combination method in arid and semi-arid region: A case study Isfahan-IRAN," Renewable and Sustainable Energy Reviews, 2015.
16. [16] P. V. Gorsevski, S. C. Cathcart, G. Mirzaei, M. M. Jamali, X. Ye, and E. Gomezdelcampo, "A group-based spatial decision support system for wind farm site selection in Northwest Ohio," Energy Policy, vol. 55, pp. 374-385, 2013. [DOI:10.1016/j.enpol.2012.12.013]
17. [17] Y. Noorollahi, H. Yousefi, and M. Mohammadi, "Multi-criteria decision support system for wind farm site selection using GIS," Sustainable Energy Technologies and Assessments, vol. 13, pp. 38-50, 2016. [DOI:10.1016/j.seta.2015.11.007]
18. [18] G. Villacreses, G. Gaona, J. Martínez-Gómez, and D. J. Jijón, "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, vol. 109, pp. 275-286, 2017. [DOI:10.1016/j.renene.2017.03.041]
19. [19] T. Höfer, Y. Sunak, H. Siddique, and R. Madlener, "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied energy, vol. 163, pp. 222-243, 2016. [DOI:10.1016/j.apenergy.2015.10.138]
20. [20] M. Tahri, M. Hakdaoui, and M. Maanan, "The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco," Renewable and Sustainable Energy Reviews, vol. 51, pp. 1354-1362, 2015. [DOI:10.1016/j.rser.2015.07.054]
21. [21] A. N. Arnette and C. W. Zobel, "Spatial analysis of renewable energy potential in the greater southern Appalachian mountains," Renewable Energy, vol. 36, no. 11, pp. 2785-2798, 2011. [DOI:10.1016/j.renene.2011.04.024]
22. [22] Ş. Şener, E. Şener, B. Nas, and R. Karagüzel, "Combining AHP with GIS for landfill site selection: a case study in the Lake Beyşehir catchment area (Konya, Turkey)," Waste management, vol. 30, no. 11, pp. 2037-2046, 2010. [DOI:10.1016/j.wasman.2010.05.024]
23. [23] S. Boroushaki and J. Malczewski, "Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS," Computers & Geosciences, vol. 34, no. 4, pp. 399-410, 2008. [DOI:10.1016/j.cageo.2007.04.003]
24. [24] T. Saaty, "The analytic hierarchy process: a 1993 overview," Central European Journal of Operation Research and Economics, vol. 2, no. 2, pp. 119-137, 1993.
25. [25] J. M. Sánchez-Lozano, J. Teruel-Solano, P. L. Soto-Elvira, and M. S. García-Cascales, "Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain," Renewable and Sustainable Energy Reviews, vol. 24, pp. 544-556, 2013. [DOI:10.1016/j.rser.2013.03.019]
26. [26] T. L. Saaty., The Analytic Hierarchy Process, Planning, Piority Setting, Resource Allocation. New york: McGraw-Hill, 1980.
27. [27] M. Uyan, "GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey," Renewable and Sustainable Energy Reviews, vol. 28, pp. 11-17, 2013. [DOI:10.1016/j.rser.2013.07.042]
28. [28] H. Yousefi, A. Kasaeian, P. Ranjbaran, and M. H. Katouli, "A Review of the Criteria for Locating of Solar Power Plants in Iran," (in eng), Geospatial Engineering Journal, Research vol. 8, no. 2, pp. 25-38, 2017. [Online]. Available: http://gej.issge.ir/article-1-212-fa.html.
29. [29] P. Prakash and D. K. Khatod, "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, vol. 57, pp. 111-130, 2016. [DOI:10.1016/j.rser.2015.12.099]
30. [30] Y. Alinejad-Beromi, M. Sedighizadeh, M. Bayat, and M. Khodayar, "Using genetic alghoritm for distributed generation allocation to reduce losses and improve voltage profile," in 2007 42nd International Universities Power Engineering Conference, 2007: IEEE, pp. 954-959. [DOI:10.1109/UPEC.2007.4469077]
31. [31] N. M. Razali and J. Geraghty, "Genetic algorithm performance with different selection strategies in solving TSP," in Proceedings of the world congress on engineering, 2011, vol. 2, pp. 1134-1139.
32. [32] K. Mohammadi, A. Mostafaeipour, Y. Dinpashoh, and N. Pouya, "Electricity generation and energy cost estimation of large-scale wind turbines in Jarandagh, Iran," Journal of Energy, vol. 2014, 2014. [DOI:10.1155/2014/613681]
ارسال پیام به نویسنده مسئول


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadedghi M, Karimi M. Wind Farms Site Selection and Allocation In Power Distribution Network Using Environmental, Economic and Technical Factors. jgit. 2021; 9 (1) :85-104
URL: http://jgit.kntu.ac.ir/article-1-653-fa.html

صادقی مینا، کریمی محمد. مکان‌یابی و تخصیص نیروگاه های بادی در شبکه فشار متوسط برق با لحاظ کردن فاکتورهای محیطی، اقتصادی و فنی. مهندسی فناوری اطلاعات مکانی. 1400; 9 (1) :104-85

URL: http://jgit.kntu.ac.ir/article-1-653-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 9، شماره 1 - ( 4-1400 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.04 seconds with 28 queries by YEKTAWEB 4353