1. [1] R. J. Keenan, G. A. Reams, F. Achard, J. V. de Freitas, A. Grainger, and E. Lindquist, "Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015," For. Ecol. Manag., vol. 352, pp. 9–20, Sep. 2015. [ DOI:10.1016/j.foreco.2015.06.014] 2. [2] "Global forest resource assessment 2015,country report Iran(islamic republic),Rome 2014." 3. [3] D. P. Bendixsen, S. W. Hallgren, and A. E. Frazier, "Stress factors associated with forest decline in xeric oak forests of south-central United States," For. Ecol. Manag., vol. 347, pp. 40–48, Jul. 2015. [ DOI:10.1016/j.foreco.2015.03.015] 4. [4] A. Valipour, T. Plieninger, Z. Shakeri, H. Ghazanfari, M. Namiranian, and M. J. Lexer, "Traditional silvopastoral management and its effects on forest stand structure in northern Zagros, Iran," For. Ecol. Manag., vol. 327, pp. 221–230, Sep. 2014. [ DOI:10.1016/j.foreco.2014.05.004] 5. [5] G.A. Heshmati, "Vegetation characteristics of four ecological zones of Iran.",International journal of plant production.summer 2007. 6. [6] F.Zakeri, S.M.Hojjati, H.kialari "Analysis of the trend of Zagros forests dieback and decline", the third international conference on the environmental planning and management.2013 7. [7] "Sustainable forest management Instructions on the prevention and control of forest ecosystems Zagros oak dieback", Forest, range and watershed management organization.I.R. of Iran 2011 8. [8] J. Lambert, C. Drenou, J.-P. Denux, G. Balent, and V. Cheret, "Monitoring forest decline through remote sensing time series analysis," GIScience Remote Sens., vol. 50, no. 4, pp. 437–457, Aug. 2013. 9. [9] E. Martinez del Castillo, A. García-Martin, L. A. Longares Aladrén, and M. de Luis, "Evaluation of forest cover change using remote sensing techniques and landscape metrics in Moncayo Natural Park (Spain)," Appl. Geogr., vol. 62, pp. 247–255, Aug. 2015. [ DOI:10.1016/j.apgeog.2015.05.002] 10. [10] C. Wang, Z. Lu, and T. L. Haithcoat, "Using Landsat images to detect oak decline in the Mark Twain National Forest, Ozark Highlands," For. Ecol. Manag., vol. 240, no. 1–3, pp. 70–78, Mar. 2007. [ DOI:10.1016/j.foreco.2006.12.007] 11. [11] Trinka Gillis, "Use of remotely sensed imagery to map sudden oak death (Phytophthora ramorum) in the Santa Cruz Mountains :: University of Southern California Dissertations and Theses," May-2014. 12. [12] R. Komura, N. Kamata, M. Kubo, and K. Muramoto, "Identification of dead tree of Japanese oak wilt (JOW) using high spatial resolution satellite imagery," in Geoscience and Remote Sensing Symposium, 2005. IGARSS '05. Proceedings. 2005 IEEE International, 2005, vol. 6, pp. 4351–4354. [ DOI:10.1109/IGARSS.2005.1525882] 13. [13] B Weissling, H Xie, P Jurena, "Early Detection of Oak Wilt Disease in Quercus ssp.: A Hyperspectral Approach Pecora 16 'Global Priorities in Land Remote Sensing' October 23 – 27, 2005." 14. [14] K. Uto, Y. Takabayashi, Y. Kosugi, and T. Ogata, "Hyperspectral Analysis of Japanese Oak Wilt to Determine Normalized Wilt Index," in Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International, 2008, vol. 2, pp. II–295–II–298. [ DOI:10.1109/IGARSS.2008.4778986] 15. [15] Uto, Kuniaki; Kosugi, Yukio, "Tree Disease Detection Based on Hyperspectral Manifold Learning of Phenological Transition on Forest," Proc., 2011. 16. [16] R. Komura and K. Esaki, "A observation of predictor of Japanese oak wilt using high spectral sensor," in Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, 2012, pp. 6344–6347. [ DOI:10.1109/IGARSS.2012.6352711] 17. [17] "WWETAC : Detection, Monitoring, and Mapping of Sudden Oak Death Using Hyperspectral Imagery." 18. [18] v. mirzaie zade,A.mahdavi,"detection of the spatial trend of vegetation change using remote sensing(case study:malekshahi city)",the first conference on enviroment of payam noor university.2014 19. [19] X. Gao, "Optical–Biophysical Relationships of Vegetation Spectra without Background Contamination," Remote Sens. Environ., vol. 74, no. 3, pp. 609–620, Dec. 2000. [ DOI:10.1016/S0034-4257(00)00150-4] 20. [20] B. Gao, "NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space," Remote Sens. Environ., vol. 58, no. 3, pp. 257–266, Dec. 1996. [ DOI:10.1016/S0034-4257(96)00067-3] 21. [21] N. H. Broge and E. Leblanc, "Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density," Remote Sens. Environ., vol. 76, no. 2, pp. 156–172, May 2001. [ DOI:10.1016/S0034-4257(00)00197-8]
|