:: دوره 9، شماره 1 - ( 4-1400 ) ::
جلد 9 شماره 1 صفحات 65-84 برگشت به فهرست نسخه ها
قطعه‌بندی تصاویر سنجش از دور با قدرت تفکیک بالا، بر مبنای سوپرپیکسل‌های استخراج شده به کمک الگوریتم SLIC بهبود یافته (E-SLIC)
نفیسه کاخانی*، مهدی مختارزاده، محمدجواد ولدان زوج
دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده:   (155 مشاهده)

قطعه‌بندی تصاویر بزرگ مقیاس سنجش از دور یکی از مهم‌ترین پردازش‌هایی است که در استخراج حداکثری و دقیق اطلاعات نقش بسزایی دارد. روش‌های قطعه‌بندی انواع مختلفی داشته که یکی از مهم‌ترین آنها استفاده از سوپرپیکسل‌ها می‌باشد. روش‌های متعددی برای استخراج سوپرپیکسل‌ها ارائه شده که از جمله‌ موفق‌ترین آن‌ها می‌توان به روش خوشه‌بندی ساده‌ خطی و تکراری (SLIC) اشاره نمود. اما این روش نیز به نوبه‌ خود دارای معایبی است که از بارزترین آنها می‌توان به تولید قطعات اضافی و عدم انطباق آنها بر اشیاء واقعی اشاره نمود. در این پژوهش تلاش شده تا حد امکان این معایب برطرف گردیده و به کمک افزودن اطلاعات لبه به الگوریتم SLIC، روش جدیدی برای قطعه‌بندی تصاویر بزرگ مقیاس ارائه شود. سه نوع داده‌ شهری مختلف از نوع هوایی و ماهواره‌ای با قدرت تفکیک مکانی بالا و با تنوع عوارض مختلف به منظور ارزیابی روش پیشنهادی استفاده شده است. نتایج روش پیشنهادی، علاوه بر الگوریتم اصلی SLIC با سایر روش‌های متداول قطعه‌بندی سوپرپکسل‌ها مانند الگوریتم خوشه‌بندی مکانی چگالی مبنا برای کاربردهای نویزدار (DBSCAN) و قطعه‌بندی سوپرپیکسل با نرخ آنتروپی مقایسه شده است. مقایسه کمی نتایج به کمک پارامتر انحراف معیار درون کلاسی (WCSD) نشان می‌دهد که در مورد تصاویر ماهواره‌ای با میانگین حدود 780 و 1040 واحد و در مورد تصاویر هوایی با میانگین حدود 220 واحد، انحراف معیار قطعات تولید شده در روش پیشنهادی از سایر روش‌های رقیب کمتر است. هم‌چنین ارزیابی بصری حاکی از آن است که قطعات تولید شده به کمک روش پیشنهادی دارای کمترین میزان انحراف معیار بوده و همگن می‌باشند.
واژه‌های کلیدی: پردازش تصاویر بزرگ مقیاس، قطعه‌بندی، سوپرپیکسل‌ها، الگوریتم SLIC.
متن کامل [PDF 2819 kb]   (87 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1397/2/1 | پذیرش: 1397/10/17 | انتشار: 1400/4/31


XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 9، شماره 1 - ( 4-1400 ) برگشت به فهرست نسخه ها