[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 326
نرخ پذیرش: 63.2
نرخ رد: 36.8
میانگین داوری: 208 روز
میانگین انتشار: 344 روز
..
:: دوره 7، شماره 1 - ( 3-1398 ) ::
جلد 7 شماره 1 صفحات 210-193 برگشت به فهرست نسخه ها
افزایش کارایی و سرعت فرآیند تناظریابی کمترین مربعات در تصاویر رقومی
امین صداقت* ، نازیلا محمدی
دانشگاه تبریز
چکیده:   (3192 مشاهده)
تناظریابی کمترین مربعات، LSM، (Least Square Matching) یکی از دقیق‌ترین روش‌های تناظریابی در فتوگرامتری و سنجش‌ازدور است. یکی از محدودیت‌های اساسی این روش پیچیدگی محاسباتی بالا به‌دلیل ابعاد بزرگ معادلات مشاهدات و روند تکراری آن تا دستیابی به جواب است. در این تحقیق روشی جدید به‌منظور بهبود سرعت و کارایی این الگوریتم با عنوان تناظریابی کمترین مربعات سریع، FLSM (Fast Least Square Matching) ارائه‌شده است. ایده اساسی در روش پیشنهادی کاهش تعداد معادلات مشاهدات در سرشکنی کمترین مربعات به‌منظور افزایش کارایی فرآیند تناظریابی است. برای این منظور پیکسل‌های واقع در پنجره تناظریابی با استفاده از یک معیار ویژه با عنوان استحکام رتبه‌بندی شده و درصد مشخصی از پیکسل‌ها با بالاترین استحکام در روند سرشکنی شرکت داده می‌شوند. به‌منظور محاسبه استحکام پیکسل‌ها از ترکیب معیار تناسب فاز و آنتروپی استفاده شده‌ است. روش پیشنهادی بر روی هشت جفت تصویر بردکوتاه، هوایی و ماهواره‌ای در دو دسته شبیه‌سازی‌شده و واقعی پیاده‌سازی شده و نتایج بیانگر بهبود قابل‌توجه سرعت (حدود سه برابر) با حفظ کیفیت فرآیند تناظریابی ‌است.
واژه‌های کلیدی: تناظریابی، کمترین مربعات، استحکام، کارایی
متن کامل [PDF 2151 kb]   (1467 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فتوگرامتری
دریافت: 1396/11/10 | پذیرش: 1397/6/10 | انتشار: 1398/3/31
فهرست منابع
1. [1] N. Tatar, M. Saadat Seresht, and H. Arefi, "Epipolar Resampling of High Resolution Satellite Stereo Images without Rational Polynomial Coefficients for Semi Global Matching," Journal of Geomatics Science and Technology, vol. 6, pp. 263-274, 2016.
2. [2] A. Fallah and M. SaadatSeresht, "A New Method for Absolute Orientation of Video Frames in Urban Scenes 3D Reconstruction Process," Journal of Geomatics Science and Technology, vol. 4, pp. 11-24, 2015.
3. [3] A. Nourmohammad and M. Saadatseresht, "Provide an Automatic Method to Compute Approximate Exterior Orientation Parameters and Tie-Points Coordinate of Ultra-Light UAV Images in Order to Accurate Photogrammetry Block Formation," Journal of Geomatics Science and Technology, vol. 4, pp. 239-252, 2015.
4. [4] S. M. Hasheminasab, H. Ebadi, A. A. Hoseininave, and A. Sedaghat, "An Improvement in SIFT Algorithm for Wide-Baseline Image Matching," Journal of Geospatial Information Technology, vol. 3, no. 3, pp. 53-74, 2015. [DOI:10.29252/jgit.3.3.53]
5. [5] M. Moradi and M. Sahebi, "Feature-Based Change Detection of Urban Areas using Particle Swarm Optimization and Genetic Algorithm," Journal of Geomatics Science and Technology, vol. 7, pp. 203-222, 2017.
6. [6] A. Moghimi, S. Khazai, and H. Ebadi, "Unsupervised Change Detection in Multitempolar SAR Images Based on Integration of Clustering and Active Contour Model," Journal of Geospatial Information Technology, vol. 5 pp. 21-37, 2016. [DOI:10.29252/jgit.5.1.21]
7. [7] S. Khazaei and V. Mosavi, "Detecting and Tracking Moving Objects in Unmanned Aerial Vehicles (UAVs) Images," Journal of Geomatics Science and Technology, vol. 7, pp. 175-184, 2017.
8. [8] F. Remondino, S. El-Hakim, A. Gruen, and L. Zhang, "Turning Images into 3-D Models," IEEE Signal Processing Magazine, vol. 25, pp. 55-65, 2008. [DOI:10.1109/MSP.2008.923093]
9. [9] A. Sedaghat and H. Ebadi, "Remote Sensing Image Matching Based on Adaptive Binning SIFT Descriptor," IEEE Transactions on Geoscience and Remote Sensing, vol. 53, pp. 5283-5293, 2015. [DOI:10.1109/TGRS.2015.2420659]
10. [10] T. Tuytelaars and K. Mikolajczyk, "Local Invariant Feature Detectors: A Survey," Foundations and Trends in Computer Graphics and Vision, vol. 3, pp. 177-280, 2008. [DOI:10.1561/0600000017]
11. [11] S. Wu, A. Oerlemans, E. M. Bakker, and M. S. Lew, "A Comprehensive Evaluation of Local Detectors and Descriptors," Signal Processing: Image Communication, vol. 59, no., pp. 150-167, 2017. [DOI:10.1016/j.image.2017.06.010]
12. [12] M. H. Lee and I. K. Park, "Performance Evaluation of Local Descriptors for Maximally Stable Extremal Regions," Journal of Visual Communication and Image Representation, vol. 47, no. 1, pp. 62-72, 2017. [DOI:10.1016/j.jvcir.2017.05.008]
13. [13] M. Gesto-Diaz, F. Tombari, D. Gonzalez-Aguilera, L. Lopez-Fernandez, and P. Rodriguez-Gonzalvez, "Feature matching evaluation for multimodal correspondence," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 129, pp. 179-188, 2017. [DOI:10.1016/j.isprsjprs.2017.05.007]
14. [14] A. Sedaghat and N. Mohammadi, "Uniform Competency-Based Local Feature Extraction for Remote Sensing Images," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 135, pp. 142-157, 2018. [DOI:10.1016/j.isprsjprs.2017.11.019]
15. [15] A. A. Goshtasby, 2-D and 3-D Image Registration: for Medical, Remote Sensing, and Industrial Applications: John Wiley & Sons, 2005.
16. [16] A. Sedaghat and A. Alizadeh Naeini, "DEM Orientation Based on Local Feature Correspondence with Global DEMs," GIScience & Remote Sensing, vol. 55, no. 1, pp. 110-129, 2017. [DOI:10.1080/15481603.2017.1364879]
17. [17] W. Förstner, "On the Geometric Precision of Digital Correlation," Int. Arch. Photogrammetry & Remote Sensing, vol. 24, pp. 176-189, 1982.
18. [18] A. Gruen, "Adaptive Least Squares Correlation: A Powerful Image Matching Technique," South African Journal of Photogrammetry, Remote Sensing and Cartography, vol. 14, pp. 175-187, 1985.
19. [19] F. Ackermann, "High Precision Digital Image Correlation," in Proceedings 39th Photogrammetric Week, Stuttgart, 1983, pp. 231-243.
20. [20] U. Helava, "Object-space Least-Squares Correlation," in (ACSM and American Society for Photogrammety and Remote Sensing, Annual Convention, Saint Louis, MO, Mar. 14-18, 1988) Photogrammetric Engineering and Remote Sensing, 1988, pp. 711-714.
21. [21] A. Gruen and E. P. Baltsavias, "Geometrically Constrained Multiphoto Matching," Photogrammetric engineering and remote sensing, vol. 54, pp. 633-641, 1988.
22. [22] X. Lin, J. Zhang, Z. Liu, J. Shen, and M. Duan, "Semi-automatic Extraction of Road Networks by Least Squares Interlaced Template Matching in Urban Areas," International Journal of Remote Sensing, vol. 32, pp. 4943-4959, 2011. [DOI:10.1080/01431161.2010.493565]
23. [23] M. Debella-Gilo and A. Kääb, "Measurement of Surface Displacement and Deformation of Mass Movements Using Least Squares Matching of Repeat High Resolution Satellite and Aerial Images," Remote Sensing, vol. 4, pp. 43-67, 2012. [DOI:10.3390/rs4010043]
24. [24] F. Bethmann and T. Luhmann, "Least-squares Matching with Advanced Geometric Transformation Models," Photogrammetrie-Fernerkundung-Geoinformation, vol. 2011, pp. 57-69, 2011. [DOI:10.1127/1432-8364/2011/0073]
25. [25] H. Hu, Y. Ding, Q. Zhu, B. Wu, L. Xie, and M. Chen, "Stable Least-squares Matching for Oblique Images Using Bound Constrained Optimization and a Robust Loss Function," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 118, pp. 53-67, 2016. [DOI:10.1016/j.isprsjprs.2016.03.019]
26. [26] T. Luhmann, S. Robson, S. Kyle, and I. Harley, Close Range Photogrammetry: Principles, Methods and Applications: Whittles, 2006.
27. [27] T. Schenk, "Digital photogrammetry," Volume I, Terra Science, 1999.
28. [28] A. Wong and D. A. Clausi, "ARRSI: Automatic Registration of Remote-Sensing Images," IEEE Transactions on Geoscience and Remote Sensing, vol. 45, pp. 1483-1493, 2007. [DOI:10.1109/TGRS.2007.892601]
29. [29] P. Kovesi, "Phase Congruency Detects Corners and Edges," In The Australian Pattern Recognition Society Conference: DICTA, 2003.
30. [30] P. Kovesi, "Phase Preserving Tone Mapping of Non-Photographic High Dynamic Range Images," in DICTA, 2012, pp. 1-8. [DOI:10.1109/DICTA.2012.6411698]
31. [31] Q. Zhang, Y. Wang, and L. Wang, "Registration of Images with Affine Geometric Distortion based on Maximally Stable Extremal Regions and Phase Congruency," Image and Vision Computing, vol. 36, pp. 23-39, 2015. [DOI:10.1016/j.imavis.2015.01.008]
32. [32] J. Fan, Y. Wu, F. Wang, Q. Zhang, G. Liao, and M. Li, "SAR Image Registration Using Phase Congruency and Nonlinear Diffusion-Based SIFT," IEEE Geoscience and Remote Sensing Letters, vol. 12, pp. 562-566, 2015. [DOI:10.1109/LGRS.2014.2351396]
33. [33] C. Schmid, R. Mohr, and C. Bauckhage, "Evaluation of Interest Point Detectors," International Journal of computer vision, vol. 37, pp. 151-172, 2000. [DOI:10.1023/A:1008199403446]
34. [34] A. Sedaghat and H. Ebadi, "Very High Resolution Image Matching Based on Local Features and K-Means Clustering," The Photogrammetric Record, vol. 30, pp. 166-186, 2015. [DOI:10.1111/phor.12101]
35. [35] C. Harris and M. Stephens, "A Combined Corner and Edge Detector," In Alvey Vision Conference, 1988, [DOI:10.5244/C.2.23]
36. [36] A. Sedaghat, M. Mokhtarzade, and H. Ebadi, "Uniform Robust Scale-Invariant Feature Matching for Optical Remote Sensing Images," IEEE Transactions on Geoscience and Remote Sensing, vol. 49, pp. 4516-4527, 2011. [DOI:10.1109/TGRS.2011.2144607]
37. [37] J. Matas, O. Chum, M. Urban, and T. Pajdla, "Robust Wide-baseline Stereo from Maximally Stable Extremal Regions," Image and Vision Computing, vol. 22, pp. 761-767, 2004. [DOI:10.1016/j.imavis.2004.02.006]
38. [38] R. L. Hardy, "Multiquadric Equations of Topography and other Irregular Surfaces," Journal of Geophysical Research, vol. 76, pp. 1905-1915, 1971. [DOI:10.1029/JB076i008p01905]
39. [39] P. R. Beaudet, "Rotationally Invariant Image Operators," in Proceedings of the International Joint Conference on Pattern Recognition, 1978, pp. 579-583
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sedaghat A, Mohammadi N. Fast Least Square Matching. jgit 2019; 7 (1) :193-210
URL: http://jgit.kntu.ac.ir/article-1-686-fa.html

صداقت امین، محمدی نازیلا. افزایش کارایی و سرعت فرآیند تناظریابی کمترین مربعات در تصاویر رقومی. مهندسی فناوری اطلاعات مکانی. 1398; 7 (1) :193-210

URL: http://jgit.kntu.ac.ir/article-1-686-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 7، شماره 1 - ( 3-1398 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 38 queries by YEKTAWEB 4660