:: دوره 7، شماره 2 - ( 6-1398 ) ::
جلد 7 شماره 2 صفحات 41-21 برگشت به فهرست نسخه ها
ارزیابی مدل‌های تصحیح توپوگرافی با‌استفاده از آنالیز دقت برآورد سرب، پارامترهای تصویری و داده‌های طیف‌سنجی میدانی
روح الله گودرزی ، مهدی مختارزاده ، محمدجواد ولدان زوج*
دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده:   (2652 مشاهده)
تأثیر خطای ناشی از ارتفاع و ناهمواری سطح زمین بر مقدار رادیانس ثبت شده تصاویر ماهوارهای، احتمال کاهش دقت نتایج خروجی الگوریتمهای اعمال شده بر روی تصاویر را افزایش خواهد داد. بدین منظور برای کاهش اثر توپوگرافی روی تصاویر، مدلهای تصحیح مختلفی براساس نوع برهم‌کنش نور و سطح زمین تعریف شدهاند. با توجه به یکسان نبودن تاثیر انواع تصحیحات، در این پژوهش، تصحیحات توپوگرافی از جمله مدللامبرتین(مدل کسینوسها) و مدلهای غیرلامبرتین (مدلهای مینهآرت و تصحیح  C) بر روی تصاویر لندست از محدوده ایرانکوه اصفهان اعمال شدند. به منظور ارزیابی این مدلها، پارامترهای آماری (اختلاف میانگین و انحراف معیار هر باند) تصاویر قبل و بعد از تصحیح، پارامترهای مبنی بر دادههای طیفسنجی (زاویه شباهت و فاصله اقلیدسی) و تأثیر تصحیحات بر دقت برآورد سرب از تصاویر با مدل رگرسین خطی مورد استفاده قرار گرفت. باتوجه به نتایج حاصل از ارزیابی به سه روش ذکر شده، مدل کسینوسها نسبت به مدل‌های غیرلامبرتین عملکرد ضعیفی جهت رفع اثر توپوگرافی از خود نشان داد. دقت کلی زاویه شباهت بالاتر از 97/0 بین طیف تصویر و داده طیفسنجی برای مدل مینهآرت و کسینوسها به ترتیب برابر با 973/0 و 891/0 حاصل شد و همچنین مقدار 83/0 خطای جذر میانگین مربعات (RMSE) و 65/0 ضریب تعیین (R2) ناشی از مدل رگرسیون بر تصویر لندست8 تصحیح شده با مدل مینهآرت، عملکرد بهتر مدل مینهآرت را نشان داد.
واژه‌های کلیدی: تصحیح توپوگرافی، سرب خاک، مدل رگرسیون خطی و طیف‌سنج SVC
متن کامل [PDF 1699 kb]   (821 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1395/4/5 | پذیرش: 1396/10/20 | انتشار: 1398/6/31
فهرست منابع
1. [1] J. Richards, "Introduction to the physics and techniques of remote sensing," Elsevier, 1990. [DOI:10.1016/0012-8252(90)90074-6]
2. [2] R. A. Schowengerdt, Remote sensing: models and methods for image processing: Academic press, 2006.
3. [3] C. Elachi and J. J. Van Zyl, Introduction to the physics and techniques of remote sensing vol. 28: John Wiley & Sons, 2006. [DOI:10.1002/0471783390]
4. [4] P. Teillet, B. Guindon, and D. Goodenough, "On the slope-aspect correction of multispectral scanner data," Canadian Journal of Remote Sensing, vol. 8, pp. 84-106, 1982. [DOI:10.1080/07038992.1982.10855028]
5. [5] T. R. Allen,"Topographic normalization of Landsat Thematic Mapper data in three mountain environments," Geocarto International, vol. 15, pp. 15-22, 2000. [DOI:10.1080/10106049908542148]
6. [6] D.L.Civco,"Topographic normalization of Landsat Thematic Mapper digital imagery," Photogrammetric Engineering and Remote Sensing, vol. 55, pp. 1303-1309, 1989.
7. [7] D. Riaño, E. Chuvieco, J. Salas, and I. Aguado, "Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003)," IEEE Transactions on geoscience and remote sensing, vol. 41, pp. 1056-1061, 2003. [DOI:10.1109/TGRS.2003.811693]
8. [8] M.Vincini, D. Reeder, and E. Frazzi, "An empirical topographic normalization method for forest TM data," in Geoscience and Remote Sensing Symposium, 2002. IGARSS'02. 2002 IEEE International, 2002, pp. 2091-2093.
9. [9] M.Vincini, D. Reeder, and E. Frazzi, "Influences of topography on TM data and vegetation indices of deciduous forests," ed, 2011.
10. [10] Y. Zhang and X. Li, "Topographic normalization of Landsat TM images in rugged terrain based on the high-resolution DEM derived from ASTER," Proceedings of the PIERS Proceeding, Suzhou, China, vol. 1216, p. 712716, 2011.
11. [11] Y. Zhang, Y. Bai, and C. Li, "Topographic normalization of Landsat TM images in rugged terrain," in Image and Signal Processing (CISP), 2014 7th International Congress on, 2014, pp. 580-585. [DOI:10.1109/CISP.2014.7003846]
12. [12] M. P.Bishop, J. F. Shroder, and J. D. Colby, "Remote sensing and geomorphometry for studying relief production in high mountains," Geomorphology, vol. 55, pp. 345-361, 2003. [DOI:10.1016/S0169-555X(03)00149-1]
13. [13] R. Richter, T. Kellenberger, and H. Kaufmann, "Comparison of topographic correction methods," Remote Sensing, vol. 1, pp. 184-196, 2009. [DOI:10.3390/rs1030184]
14. [14] S. Hantson and E. Chuvieco, "Evaluation of different topographic correction methods for Landsat imagery," International Journal of Applied Earth Observation and Geoinformation, vol. 13, pp. 691-700, 2011. [DOI:10.1016/j.jag.2011.05.001]
15. [15] C. Wei, T. Qingjiu, and W. Liming, "A model of topographic correction and reflectance retrieval for optical satellite data in forested areas," The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRC). Beijing China, pp. 243-248, 2008.
16. [16] P.Füreder, "Topographic correction of satellite images for improved LULC classification in alpine areas," Grazer Schriften der Geographie und Raumforschung, vol. 45, pp. 187-194, 2010.
17. [17] S. Vanonckelen, S. Lhermitte, and A. Van Rompaey, "The effect of atmospheric and topographic correction methods on land cover classification accuracy," International Journal of Applied Earth Observation and Geoinformation, vol. 24, pp. 9-21, 2013. [DOI:10.1016/j.jag.2013.02.003]
18. [18] S. Vanonckelen, S. Lhermitte, and A. Van Rompaey, "The effect of atmospheric and topographic correction on pixel-based image composites: Improved forest cover detection in mountain environments," International Journal of Applied Earth Observation and Geoinformation, vol. 35, pp. 320-328, 2015. [DOI:10.1016/j.jag.2014.10.006]
19. [19] H. Ge, D. Lu, S. He, A. Xu, G. Zhou, and H. Du, "Pixel-based Minnaert correction method for reducing topographic effects on a Landsat 7 ETM+ image," Photogrammetric Engineering & Remote Sensing, vol. 74, pp. 1343-1350, 2008. [DOI:10.14358/PERS.74.11.1343]
20. [20] H. Reese and H. Olsson, "C-correction of optical satellite data over alpine vegetation areas: A comparison of sampling strategies for determining the empirical c-parameter," Remote Sensing of Environment, vol. 115, pp. 1387-1400, 2011. [DOI:10.1016/j.rse.2011.01.019]
21. [21] S. A. Soenen, D. R. Peddle, and C. A. Coburn, "< img src="/images/tex/265. gif" alt=" hbox {SCS+ C}">: A Modified Sun-Canopy-Sensor Topographic Correction in Forested Terrain," Geoscience and Remote Sensing, IEEE Transactions on, vol. 43, pp. 2148-2159, 2005. [DOI:10.1109/TGRS.2005.852480]
22. [22] E. P. Moreira and M. M. Valeriano, "Application and evaluation of topographic correction methods to improve land cover mapping using object-based classification," International Journal of Applied Earth Observation and Geoinformation, vol. 32, pp. 208-217, 2014. [DOI:10.1016/j.jag.2014.04.006]
23. [23] M.-L. Gao, W.-J. Zhao, Z.-N. Gong, H.-L. Gong, Z. Chen, and X.-M. Tang, "Topographic correction of ZY-3 satellite images and its effects on estimation of shrub leaf biomass in mountainous areas," Remote Sensing, vol. 6, pp. 2745-2764, 2014. [DOI:10.3390/rs6042745]
24. [24] D. P. Roy, M. Wulder, T. Loveland, C. Woodcock, R. Allen, M. Anderson, et al., "Landsat-8: Science and product vision for terrestrial global change research," Remote Sensing of Environment, vol. 145, pp. 154-172, 2014. [DOI:10.1016/j.rse.2014.02.001]
25. [25] H. Fujisada, G. B. Bailey, G. G. Kelly, S. Hara, and M. J. Abrams, "Aster dem performance," Geoscience and Remote Sensing, IEEE Transactions on, vol. 43, pp. 2707-2714, 2005. [DOI:10.1109/TGRS.2005.847924]
26. [26] R. Goodarzi, M. Mokhtarzade, and M. Zoej, "A Robust Fuzzy Neural Network Model for Soil Lead Estimation from Spectral Features," Remote Sensing, vol. 7, pp. 8416-8435, 2015. [DOI:10.3390/rs70708416]
27. [27] S. L. Cundill, H. van der Werff, and M. van der Meijde, "Adjusting Spectral Indices for Spectral Response Function Differences of Very High Spatial Resolution Sensors Simulated from Field Spectra," Sensors, vol. 15, pp. 6221-6240, 2015. [DOI:10.3390/s150306221]
28. [28] H. Ibrahim, A. Hatira, and T. Gallali, "Relationship between nitrogen and soil properties: Using multiple linear regressions and structural equation modeling," Int. J. Res. Appl. Sci, vol. 2, pp. 1-7, 2013.
29. [29] R. G. Brereton, "Introduction to multivariate calibration in analytical chemistryElectronic Supplementary Information available. See http://www. rsc. org/suppdata/an/b0/b003805i," Analyst, vol. 125, pp. 2125-2154, 2000. [DOI:10.1039/b003805i]
30. [30] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear regression analysis: John Wiley & Sons, 2015.
31. [31] S. R. Jammalamadaka, "Introduction to linear regression analysis," ed: Taylor & Francis, 2003. [DOI:10.1198/tas.2003.s211]
32. [32] F. A. Yitagesu, F. Van der Meer, H. Van der Werff, and W. Zigterman, "A multivariate regression analysis for deriving engineering parameters of expansive soils from spectral reflectance," The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 37, pp. 1319-1323, 2008.
33. [33] P. E. Dennison, K. Q. Halligan, and D. A. Roberts, "A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper," Remote Sensing of Environment, vol. 93, pp. 359-367, 2004. [DOI:10.1016/j.rse.2004.07.013]
34. [34] E. Choe, F. van der Meer, F. van Ruitenbeek, H. van der Werff, B. de Smeth, and K.-W. Kim, "Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain," Remote Sensing of Environment, vol. 112, pp. 3222-3233, 2008. [DOI:10.1016/j.rse.2008.03.017]
35. [35] J. Taylor, Introduction to error analysis, the study of uncertainties in physical measurements, 1997.



XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 7، شماره 2 - ( 6-1398 ) برگشت به فهرست نسخه ها