:: دوره 8، شماره 2 - ( 6-1399 ) ::
جلد 8 شماره 2 صفحات 74-59 برگشت به فهرست نسخه ها
ارتقاء صحت برآورد رس، سیلت و شن خاک با حذف اثر رطوبت از بازتابندگی طیفی
سهام میرزایی ، علی درویشی بلورانی*، حسینعلی بهرامی ، سیدکاظم علوی پناه ، علی جعفر موسیوند
دانشگاه تهران
چکیده:   (2812 مشاهده)
رطوبت خاک یکی از مهمترین پارامترهای تاثیرگذار بر بازتاب طیفی خاک است. تغییرپذیری بالای رطوبت از نظر زمانی و مکانی، مانع بزرگی در تخمین ویژگی­های خاک با استفاده از داده­های طیف­سنجی میدانی ایجاد می­نماید. لذا توسعه روشی که بتواند تاثیرپذیری برآورد ویژگی­های خاک از تغییرات رطوبت را به حداقل برساند، ضروری است. برای حذف اثر رطوبت از بازتاب طیفی خاک، الگوریتم متعامدسازی پارامتر خارجی (EPO) توسعه داده شد. روش اعتبارسنجی متقاطع برای تعیین تعداد مؤلفه بهینه در ماتریس EPO مورد استفاده قرار گرفت. بازتابندگی طیفی ۱۷۵ نمونه خاک در ۷ سطح رطوبتی (هواخشک، ۶، ۱۲، ۱۸، ۲۴، ۳۰ و ۳۶٪) اندازه­گیری شد. با استفاده از الگوریتم EPO توسعه یافته، اثر رطوبت از طیف­های اندازه گیری شده برداشته شد. مدل رگرسیون حداقل مربعات جزئی (PLSR) برای مجموعه داده بدون و با اثر رطوبت واسنجی و سپس برای برآورد اجزای بافت خاک استفاده شد. حضور رطوبت در نمونه­های خاک منجر به کاهش دقت برآورد رس (از 70/0=R2 به 38/0=R2)، سیلت (از 34/0=R2 به 20/0=R2) و شن (از 40/0=R2 به 30/0=R2) با استفاده از مدل­های PLSR واسنجی شده از نمونه های خشک می­شود. کاهش دقت در سطح رطوبتی بالاتر با شدت بیشتری اتفاق می­افتد. حذف اثر رطوبت بوسیله الگوریتم EPO منجر به افزایش R2 در برآورد رس، سیلت و شن خاک با استفاده از مدل PLSR، به ترتیب، به میزان ۲۳/۰ و ۱۲/۰ و ۱۶/۰ گردید. بنابراین با استفاده از الگوریتم EPO، قابلیت طیف­سنجی برای برآورد اجزای بافت خاک تحت تاثیر تغییرات رطوبت خاک قرار نمی­گیرد و امکان استفاده از مدل­های توسعه یافته از نمونه­های هواخشک در مطالعات میدانی فراهم می­شود.
واژه‌های کلیدی: EPO، PLSR، طیف‌سنجی، رطوبت خاک، بافت خاک.
متن کامل [PDF 1710 kb]   (1030 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1398/7/16 | پذیرش: 1399/3/31 | انتشار: 1399/6/31
فهرست منابع
1. [1] J. Bouma, "Soil environmental quality: A European perspective", J. Environ. Qual. 26, 26-31, 1997.
2. [2] D. L. Karlen, M. J. Mausbach, J. W. Doran, R. G. Cline, R. F. Harris, and G. E. Schuman, "Soil quality: A concept, definition, and Framework for Evaluation", Soil Sci. Soc. Am. J. 61, 4-10, 1997.
3. [3] B. Stenberg, R. A., Viscarra Rossel, A. M. Mouazen, and J. Wetterlind, "Visible and near infrared spectroscopy in soil science", Adv. Agron. 107, 163-215, 2010.
4. [4] F. Castaldi, A. Palombo, S. Pascucci, S. Pignatti, F. Santini, and R. Casa, "Reducing the Influence of Soil Moisture on the Estimation of Clay from Hyperspectral Data: A Case Study Using Simulated PRISMA Data", Remote Sensing, 7(11), 15561-15582, 2015.
5. [5] R. Viscarra Rossel, D. Walvoort, A. McBratney, L. J. Janik, and J. Skjemstad, "Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties", Geoderma, 131(1), 59-75, 2006.
6. [6] D. J. Brown, K. D. Shepherd, M. G. Walsh, M. Dewayne Mays, and T. G. Reinsch, "Global soil characterization with VNIR diffuse reflectance spectroscopy", Geoderma, 132(3), 273-290, 2006.
7. [7] B. Minasny, A. B. Mcbratney, V. Bellon-Maurel, J. M. Roger, A. Gobrecht, L. Ferrand, and S. Joall, "Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbón", Geoderma, 167-168, 118-124, 2011.
8. [8] M. Nocita, A. Stevens, C. Noon, and B. van Wesemael, "Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy", Geoderma, 199, 37-42, 2013.
9. [9] T. H. Waiser, C. L. S. Morgan, D. J. Brown, and C. T. Hallmark, "In Situ Characterization of Soil Clay Content with Visible Near-Infrared Diffuse Reflectance Spectroscopy", Soil Sci. Soc. Am. J, 71(2), 389-396, 2007.
10. [10] Y. Ge, J. A. Thomasson, C. L. Morgan, and S. W. Searcy, "VNIR diffuse reflectance spectroscopy for agricultural soil property determination based on regression-kriging", Trans. ASABE, 50 (3), 1081-1092, 2007.
11. [11] K. D. Shepherd, and M. G. Walsh, "Development of reflectance spectral libraries for characterization of soil properties", Soil Sci. Soc. Am. J, 66 (3), 988-998, 2002.
12. [12] E. Ben-Dor, D. Heller, and A. Chudnovsky, (2008). A novel method of classifying soil profiles in the field using optical means. Soil Sci. Soc. Am. J, 72(4), 1113-1123.
13. [13] R. S. Bricklemyer, and D. J. Brown, "On-the-go VisNIR: potential and limitations for mapping soil clay and organic carbón", Comput. Electron. Agric. 70, 209-216, 2010.
14. [14] C.D. Christy, "Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy", Comput. Electron. Agric. 61, 10-19, 2008.
15. [15] A. M. Mouazen, M. R. Maleki, J. De Baerdemaeker, and H. Ramon, "On-line measurement of some selected soil properties using a VIS-NIR sensor", Soil Tillage Res. 93, 13-27, 2007.
16. [16] K. A. Sudduth, and J. W. Hummel, "Portable, near-infrared spectrophotometer for rapid soil analysis", Trans. ASAE, 36, 185-193, 1993.
17. [17] R. A. Viscarra Rossel, S. R. Cattle, A. Ortega, and Y. Fouad, "In situ measurements of soil colour, mineral composition and clay content by vis-NIR spectroscopy", Geoderma, 150, 253-266, 2009.
18. [18] Z. Tumsavas, Y. Tekin, Y. Ulusoy, A. M. Mouazen, "Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy", Biosystems Engineering, 177, 90 -100, 2019.
19. [19] A. M. Mouazen, J. De Baerdemaeker, and H. Ramon, "Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer", Soil. Till. Res, 80, 171-183, 2005.
20. [20] H. P. Ackerson, C. L. S. Morgan, and Y. Ge, "Penetrometer-mounted VisNIR spectroscopy: Application of EPO-PLS to in situ VisNIR spectra", Geoderma, 286, 131-138, 2017.
21. [21] J. M. Roger, F. Chauchard, and V. Maurel, "EPO-PLS external parameter orthogonalisation of PLS application to temperature-independent measurement of sugar content of intact fruits", Chemometr Intell Lab Sys, 66 (2), 191-204, 2003.
22. [22] P. A. Gorry, "General least-squares smoothing and differentiation by the convolution (savitzky-golay) method", Anal. Chem. 62, 570-573, 1990.
23. [23] [R. J. Barnes, M. S. Dhanoa, and S. J. Lister, "Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra", Appl. Spectrosc. 43-5, 772-777, 1989.
24. [24] [R. J. Barnes, M. S. Dhanoa, and S. J. Lister, "Correction to the description of standard normal variate (SNV) and de-trend transformations in practical spectroscopy with applications in food and beverage analysis", J. Near Infrared Spectrosc. 1, 185-186, 1993.
25. [25] H. Martens, T. Naes, Multivariate Calibration, New York, Wiley, 1989.
26. [26] K. Faber, and B. R. Kowalski, "Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares", J. Chemometrics 11, 181-238, 1997. https://doi.org/10.1002/(SICI)1099-128X(199705)11:3<181::AID-CEM459>3.0.CO;2-7 [DOI:10.1002/(SICI)1099-128X(199705)11:33.0.CO;2-7]
27. [27] Y. Ge, C. L. S. Morgan, and J. P. Ackerson, "VisNIR spectra of dried ground soils predict properties of soils scanned moist and intact", Geoderma, 221-222, 61-69, 2014.
28. [28] N. K. Wijewardane, Y. Ge, and C. L. S. Morgan, "Moisture insensitive prediction of soil properties from VNIR reflectance spectra based on external parameter orthogonalization", Geoderma, 267, 92-101, 2016.
29. [29] H. P. Ackerson, J. A. M. Demattê, and C. L. S. Morgan, "Predicting clay content on field-moist intact tropical soils using a dried, ground VisNIR library with external parameter orthogonalization", Geoderma, 259-260, 196-204, 2015.
30. [30] K. S. Veum, P. A. Parker, K. A. Sudduth, S.H. Holan, "Predicting Profile Soil Properties with Reflectance Spectra via Bayesian Covariate-Assisted External Parameter Orthogonalization", Sensors, 18(11), 3869, 2018.
31. [31] S. Dieka, S. Chabrillatb, M. Nocitac, M. E. Schaepmana, R. de Jonga, "Minimizing soil moisture variations in multi-temporal airborne imaging spectrometer data for digital soil mapping", Geoderma, 337, 607-621, 2019.
32. [32] S. Chakraborty, B. Li, D. C. Weindorf, C. L.S. Morgan, "External parameter orthogonalisation of Eastern European VisNIR-DRS soil spectra", Geoderma, 337, 65-75, 2019.
33. [33] Y. Ogen, S. Faigenbaum-Golovin, A. Granot, Y. Shkolnisky, N. Goldshleger, E, Ben-Dor, "Removing Moisture Effect on Soil Reflectance Properties: A Case Study of Clay Content Prediction", Pedosphere, 29(4), 421-431, 2019.
34. [34] I. Bogrekci, and W. S. Lee, "Effects of soil moisture content on absorbance spectra of sandy soils in sensing phosphorus concentrations using UV-Vis-NIR spectroscopy. American Society of Agricultural and Biological Engineers", 49(4), 1175−1180, 2006.
35. [35] W. Ji, R. A. Viscarra Rosselb, and Z. Shi, "Accounting for the effects of water and the environment on proximally sensed vis-NIR soil spectra and their calibrations", European Journal of Soil Science, 66, 555-565, 2015.
36. [36] F. B. de Santana, L. O. de Giuseppe, A. M. de Souza, R. J. Poppi, "Removing the moisture effect in soil organic matter determination using NIR spectroscopy and PLSR with external parameter orthogonalization", Microchemical Journal, 145, 1094-1101, 2019.
37. [37] N. K. Wijewardane, Y. Ge, C. L. S. Morgan, "Prediction of soil organic and inorganic carbon at different moisture contents with dry ground VNIR: a comparative study of different approaches", Eur. J. Soil Sci, 67, 605-615, 2016.
38. [38] Y. Liu, X. Pan, C. Wang, Y. Li, and R. Shi, "Predicting soil salinity with Vis-NIR spectra after removing the effects of soil moisture using External Parameter Orthogonalization", PLOS ONE, 10(10), 1-13, 2015.
39. [39] J. Wang, J. Ding, A. Abulimiti, and L. Cai, "Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake Wetland, Northwest China", PeerJ, (6), 1-24. DOI 10.771/peerj.4703, 2018.
40. [40] M. Ahmad, D. Chakraborty, P. Aggarwal, R. Bhattacharyya, and R. Singh, "Modelling soil water dynamics and crop water use in a soybean-wheat rotation under chisel tillage in a sandy clay loam soil", Geoderma, 327, 13-24, 2018.
41. [41] Y. A. Chung, R. L. Sinsabaugh, C. R. Kuske, S. C. Reed, J and. A. Rudgers, "Spatial variation in edaphic characteristics is a stronger control than nitrogen inputs in regulating soil microbial effects on a desert grass", J. Arid Environ. 142, 59-65, 2017.
42. [42] J. Martnez-Fernndez, A. Gonzlez-Zamora, N. Snchez, and A. Gumuzzio, "A soil water based index as a suitable agricultural drought indicator" J. Hydrol. 522, 265-273, 2015.
43. [43] D. Moghadas, K. Z. Jadoon, and M. F. McCabe, "Spatiotemporal monitoring of soil water content profiles in an irrigated field using probabilistic inversion of time-lapse emi data", Adv. Water Resour. 110, 238-248, 2017.
44. [44] R. D. Koster, P. A. Dirmeyer, Z. C. Guo, G. Bonan, E. Chan, P. Cox, C. T. Gordon, S. Kanae, E. Kowalczyk, D. Lawrence, P. Liu, C. H. Lu, S. Malyshev, B. Mcavaney, K. Mitchell, D. Mocko, T. Oki, K. Oleson, A. Pitman, Y. C. Sud, C. M. Taylor, D. Verseghy, R. Vasic, Y. K. Xue, and T. Yamada, "Regions of strong coupling between soil moisture and precipitation", Science, 305 (5687), 1138-1140, 2004.
45. [45] T. J. Wang, S. K. Singh, and A. Bárdossy, "On the use of the critical event concept for quantifying soil moisture dynamics", Geoderma, 335, 27-34, 2019.
46. [46] T. J. Wang, D. A. Wedin, T. E. Franz, and J. Hiller. "Effect of vegetation on the temporal stability of soil moisture in grass-stabilized semi-arid sand dunes", J. Hydrol. 521, 447-459, 2015.
47. [47] B. Kuang, and A. M. Mouazen, "Effect of spiking strategy and ratio on calibration of online visible and near infrared soil sensor for measurement in European farms", Soil Tillage Res, 128, 125-136, 2013.
48. [48] D. B. Lobell, and G. P. Asner, "Moisture effects on soil reflectance", Soil Sci. Soc. Am. J. 66, 722-727, 2002.
49. [49] Y. Zhu, D. C. Weindorf, S. Chakraborty, B. Haggard, S. Johnson, and N. Bakr, "Characterizing surface soil water with field portable diffuse reflectance spectroscopy", J. Hydrol. 391 (1-2), 133-140, 2010.
50. [50] S. Fabre, X. Briottet and A. Lesaignoux, "Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4-2.5 μm domain", Sensors, 15, 3262-3281, 2015.
51. [51] A. M. Mouazen, R. A. Al-Asadi, "Influence of soil moisture content on assessment of bulk density with combined frequency domain reflectometry and visible and near infrared spectroscopy under semi field conditions", Soil. Till. Res, 176, 95-103, 2018.
52. [52] S. Khanna, A. Palacios-Orueta, M. L. Whiting, S. L. Ustin, D. Riaño, J. Litago, "Development of Angle Indexes for Soil Moisture Estimation, Dry Matter Detection and Land-cover Discrimination", Remote Sens. Environ, 109, 154-165, 2007.
53. [53] C. L. S. Morgan, T. H. Waiser, D. J. Brown, and C. T. Hallmark, "Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diffuse reflectance spectroscopy", Geoderma, 151, 249-256, 2009.
54. [54] C. Y. Wu, A. R. Jacobson, M. Laba, and P. C. Baveye, "Alleviating Moisture Content Effects on the Visible Near-Infrared Diffuse-Reflectance Sensing of Soils", Soil Sci, 174, 456-465, 2009.
55. [55] A. Darvishi Bloorani, "Designing and building of Soil Spectral Library and Soil Information Database of Iran (Tehran and Lorestan provinces)". Presidential Deputy for Science and Technology of Iran, 2016.
56. [56] E. Ben Dora, C. Ong, and I. C. Lau, "Reflectance measurements of soils in the laboratory: Standards and protocols", Geoderma, 245-246, 112-124, 2015.
57. [57] A. Savitzky, M. J. E. Golay, "Smoothing and differentiation of data by simplified least square procedure", Analytical Chemistry, 36 (8), 1627-1638, 1964.



XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 8، شماره 2 - ( 6-1399 ) برگشت به فهرست نسخه ها