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. Import necessary libraries
. Read the frozen graph from a file
. Load the RGB image and the depth image

. Extract the image tensor from the session
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. Resize the RGB image and convert it to grayscale
. Reshape the resized image to have the format [1, height, width, 3]

. Extract the detection boxes, scores, classes, and num_detection
. Extract The coordinates of the center of the boxes and its depth
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FUNCTION main(repeat=25):
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SET setting TO dictionary with specific keys and values

SET keys TO list of specific keys from setting

SET name TO formatted string using keys and setting values
CALL prepare_data with setting and UNPACK returned values into train_data, valid_data, test_data

FUNCTION prepare_data(setting):
Load Data
SET train, valid, test TO load_data(setting)

SET train_data TO DatalLoader instance with train, batch_size, shuffle flag, and collate_fn
SET valid_data TO DatalLoader instance with valid, batch_size, shuffle flag, and collate_fn
SET test_data TO DatalLoader instance with test, batch_size, shuffle flag, and collate_fn

RETURN train_data, valid_data, test_data

FUNCTION train_fn(train_data, valid_data, setting):

SET net TO Predictor instance with setting

SET optimizer TO Adam optimizer with net parameters and learning rate

SET loss_fn TO MSELoss
SET best_loss TO infinity
FOR I IN range(nepoch):
SET net to training mode
SET ep_loss TO 0
FOR j, batch IN enumerate(train_data):
SET %, y, m TO batch
SET yhat TO net(x)
SET loss TO loss_fn(yhat[m], y[m])
RESET optimizer gradients
COMPUTE gradients of the loss
UPDATE optimizer parameters
ADD loss to ep_loss

OUTPUT training RMSE for the current epoch
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! Batch Size

2 Learning Rate

3 Epoch

4 Optimization

3 Adam Optimizer

6 Cost Function

7 Min((Euclidean Distance)
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Abstract

Pedestrian trajectory prediction is a critical challenge in the fields of computer vision and intelligent
transportation systems, as it directly impacts the safety and decision-making capabilities of autonomous systems.
Most existing approaches rely on two-dimensional (RGB) data and recurrent neural networks such as LSTM
(Long Short Term Memory), which neglect the depth dimension and therefore fail to accurately estimate
distances between pedestrians and surrounding objects. In this study, we propose a 3D-LSTM (Three Dimension
LSTM) model that utilizes RGB-D data obtained from a fixed Kinect sensor to predict pedestrian positions in
metric three-dimensional space. The proposed framework includes depth extraction from stereo images,
coordinate normalization, and LSTM-based sequence modeling to forecast future pedestrian positions in the (X,
Y, Z) coordinates. Experimental evaluations conducted on the Ecole Polytechnique Fédérale de Lausanne
(EPFL) dataset demonstrate that the 3D prediction accuracy (average RMSE: 15.7 cm) is comparable to
conventional two-dimensional methods while additionally providing real-world distance and spatial interaction
information that is crucial for collision avoidance and motion planning. The results indicate that incorporating
the third dimension does not degrade performance; instead, it enhances the ability of intelligent systems to make
safer and more informed decisions in dynamic environments. This approach lays the groundwork for advanced
navigation and autonomous driving systems with enhanced three-dimensional situational awareness.

Key words: Pedestrian Trajectory, Trajectory prediction, deep learning, 3D-LSTM Network.
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