1. [1] F. Alidoost, M. Mobasheri, A. Abkar, "An efficient method to increase the spectral and spatial resolution in satellite images in urban environment", Iranian journal of Remote Sensing & GIS, vol. 4, no. 4, 2013. [ DOI:10.1127/1432-8364/2013/0156] 2. [2] S. M . N. Niazi, M. Mokhtar Zade, F. Saeed Zadeh, "A Novel IHS-GA Fusion Method Based on Enhancement Vegetated Area", Journal of Geomatics Science and Technology, vol. 6, no. 1, pp. 235-248, 2016. 3. [3] Y. Ling, M. Ehlers, E. L. Usery, M. Madden, "FFT-enhanced IHS transform method for fusing high-resolution satellite images", ISPRS Journal of photogrammetry and Remote Sensing, vol. 61, no. 6, pp. 381-392, 2007. [ DOI:10.1016/j.isprsjprs.2006.11.002] 4. [4] Y. Zhang, G. Hong, "An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images", Information fusion, vol. 6, no. 3, pp. 225-234, 2005. [ DOI:10.1016/j.inffus.2004.06.009] 5. [5] M. Bashirpoor, M. Valadan, Y. Maghsoodi, "Comparison of integration methods based on PCA and IHS in order to integrate Hyperion and Cartosat-1 images", Iranian journal of Remote Sensing & GIS, vol. 8, no. 4, pp. 17-30, 2016. 6. [6] R. Shahhoseini, T. S. Seyyedi, R. Habiballahi, "Comparative Evaluation of Image Fusion Methods for Hyperspectral and Panchromatic Data Fusion in Agricultural and Urban Areas", Geospatial Engineering Journal. 10, no. 2, pp. 63-78, 2019. 7. [7] M. Kabolizade, K. Rangzan, S. Mohammadi, "Application of fusion in satellite images the Landsat-8 and Sentinel-2 in environmental monitoring", Journal applied RS and GIS techniques in natural resource, vol. 9, no. 3, pp. 53-71, 2018. 8. [8] K. Yaghoubi, A. R. Safdarinezhad, M. Jafari, "A method for determining the optimum parameter of the soft filters to image fusion in the frequency domain", Journal of Space Science and Technology, vol. 14, no. 3, pp. 23-37, 2021. 9. [9] M. Gargiulo, A. Mazza, R. Gaetano, G. Ruello, G. Scarpa, "Fast super-resolution of 20 m sentinel-2 bands using convolutional neural networks", Remote Sensing, vol. 11, no. 22, p. 26-35, 2019. [ DOI:10.3390/rs11222635] 10. [10] S. Kalantari, M. J. Abdollahifard, S. Ahmadi, "Image Super-Resolution Using Analytical Edge Model", Journal of Iranian Association of Electrical and Electronics Engineers, vol. 15, no. 2, pp. 45-54, 2018. 11. [11] Z. Wei, K.-K. Ma, "Contrast-guided image interpolation", IEEE Transactions on Image Processing, vol. 22, no. 11, pp. 4271-4285, 2013. [ DOI:10.1109/TIP.2013.2271849] 12. [12] K. Jia, X. Wang, X. Tang, "Image transformation based on learning dictionaries across image spaces", IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 2, pp. 367-380, 2012. [ DOI:10.1109/TPAMI.2012.95] 13. [13] C. Ledig et al., "Photo-realistic single image super-resolution using a generative adversarial network", presented at IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 2017. [ DOI:10.1109/CVPR.2017.19] 14. [14] C. Dong, C. C. Loy, K. He, X. Tang, "Learning a deep convolutional network for image super-resolution", presented at 13th European Conference on Computer Vision, Zurich, Switzerland, 2014. [ DOI:10.1007/978-3-319-10593-2_13] 15. [15] K. Zhang, J. Liang, L. Van Gool, R. Timofte, "Designing a practical degradation model for deep blind image super-resolution", presented at the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 2021. [ DOI:10.1109/ICCV48922.2021.00475] 16. [16] Y. Huang, S. Li, L. Wang, T. Tan, "Unfolding the alternating optimization for blind super resolution", Advances in Neural Information Processing Systems, vol. 33, pp. 5632-5643, 2020. 17. [17] J. Kim, J. K. Lee, K. M. Lee, "Deeply-recursive convolutional network for image super-resolution", presented at the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 2016. [ DOI:10.1109/CVPR.2016.181] 18. [18] J.-B. Huang, A. Singh, N. Ahuja, "Single image super-resolution from transformed self-exemplars", presented at the IEEE conference on computer vision and pattern recognition, Boston, Massachusetts, USA, 2015. [ DOI:10.1109/CVPR.2015.7299156] 19. [19] W. T. Freeman, T. R. Jones, E. C. Pasztor, "Example-based super-resolution", IEEE Computer graphics and Applications, vol. 22, no. 2, pp. 56-65, 2002. [ DOI:10.1109/38.988747] 20. [20] D. Glasner, S. Bagon, M. Irani, "Super-resolution from a single image", presented at the 2009 IEEE 12th international conference on computer vision, Kyoto, Japan, 2009. [ DOI:10.1109/ICCV.2009.5459271] 21. [21] C. Dong, C. C. Loy, K. He, X. Tang, "Image super-resolution using deep convolutional networks", IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 2, pp. 295-307, 2015. [ DOI:10.1109/TPAMI.2015.2439281] 22. [22] M. R. U. Hoque, R. Burks, C. Kwan, J. Li, "Deep learning for remote sensing image super-resolution", presented at the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), NY, USA, 2019. [ DOI:10.1109/UEMCON47517.2019.8993047] 23. [23] M. Habibi, A. R. Ahmadyfard, H. Hassanpour, "Single Image Super-Resolution via Learning Segmented Regions of the Input Image", Journal of Machine Vision and Image Processing, vol. 7, no. 1, pp. 111-121, 2020. 24. [24] Y. Li, B. Li, "Super-Resolution of Sentinel-2 Images at 10m Resolution without Reference Images", Preprints.org 2021, 2021040556. [ DOI:10.20944/preprints202104.0556.v1] 25. [25] X. Wang, L. Xie, C. Dong, Y. Shan, "Real-esrgan: Training real-world blind super-resolution with pure synthetic data", presented at the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021. [ DOI:10.1109/ICCVW54120.2021.00217] 26. [26] X. Wang et al., "Esrgan: Enhanced super-resolution generative adversarial networks", presented at the European conference on computer vision (ECCV) workshops, Munich, Germany, 2018. [ DOI:10.1007/978-3-030-11021-5_5] 27. [27] Y. Zhu, S. Newsam, "Densenet for dense flow", presented at the 2017 IEEE international conference on image processing (ICIP), Beijing, China, 2017. [ DOI:10.1109/ICIP.2017.8296389] 28. [28] S. Bharati, P. Podder, M. Mondal, V. B. Prasath, "CO-ResNet: Optimized ResNet model for COVID-19 diagnosis from X-ray images", International Journal of Hybrid Intelligent Systems, vol. 17, no. 1-2, pp. 71-85, 2021. [ DOI:10.3233/HIS-210008] 29. [29] E. H. Helmer, B. Ruefenacht, "Cloud-free satellite image mosaics with regression trees and histogram matching", Photogrammetric engineering and remote sensing, vol. 71, no. 9, pp. 1079-1089, 2005. [ DOI:10.14358/PERS.71.9.1079] 30. [30] Xu. Li, Y. Zhang, Y. Gao, S. Yue, "Using guided filtering to improve gram-schmidt based pansharpening method for GeoEye-1 satellite images", presented at 4th International Conference on Information Systems and Computing Technology, Shanghai, China,2016. [ DOI:10.2991/isct-16.2016.6] 31. [31] T. Maurer, "How to pan-sharpen images using the gram-schmidt pan-sharpen method-A recipe", presented at International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Hannover, Germany. 2013. [ DOI:10.5194/isprsarchives-XL-1-W1-239-2013] 32. [32] B. Goodarzi, J. Javidan, and M. J. Dehghani, "New changes of local binary patterns and classification and segmentation of seabed images", Journal of Information and Communication Technology, vol. 27, no. 27, p. 1-20, 2019. 33. [33] S.Talebi, A. Zarea, S. Sadeghian, H. Arefi, "A Hierarchical Unsupervised Method for Tree Detection Using Aerial Imagery and LiDAR", Geospatial Engineering Journal, vol. 5, no. 3, pp. 55-66, 2014. 34. [34] C. Keeratikasikorn, I. Trisirisatayawong, "Reconstruction of 30m dem from 90 m SRTM DEM with bicubic polynomial interpolation method", The International Archives of the Photogrammetry, Remote sensing and spatial information Sciences, vol. 37, pp. 791-794, 2008.
|