1. [1] X. Zhang, "Benchmarking and comparing multi-exposure image fusion algorithms," Inf. Fusion, vol. 74, no. July 2020, pp. 111-131, 2021, doi: 10.1016/j.inffus.2021.02.005. [ DOI:10.1016/j.inffus.2021.02.005] 2. [2] Z. Ying, G. Li, and W. Gao, "A Bio-Inspired Multi-Exposure Fusion Framework for Low-light Image Enhancement," vol. 14, no. 8, pp. 1-10, 2017, [Online]. Available: http://arxiv.org/abs/1711.00591 3. [3] K. Ma and Z. Wang, "Multi-exposure image fusion: A patch-wise approach," Proc. - Int. Conf. Image Process. ICIP, vol. 2015-Decem, pp. 1717-1721, 2015, doi: 10.1109/ICIP.2015.7351094. [ DOI:10.1109/ICIP.2015.7351094] 4. [4] H. Li, K. Ma, H. Yong, and L. Zhang, "Fast Multi-Scale Structural Patch Decomposition for Multi-Exposure Image Fusion," IEEE Trans. Image Process., vol. 29, pp. 5805-5816, 2020, doi: 10.1109/TIP.2020.2987133. [ DOI:10.1109/TIP.2020.2987133] 5. [5] P. J. Burt and R. J. Kolczynski, "Enhanced image capture through fusion," in 1993 (4th) International Conference on Computer Vision, 1993, pp. 173-182. doi: 10.1109/ICCV.1993.378222. [ DOI:10.1109/ICCV.1993.378222] 6. [6] A. Vyas, S. Yu, and J. Paik, "Fundamentals of digital image processing," Signals Commun. Technol., no. November, pp. 3-11, 2018, doi: 10.1007/978-981-10-7272-7_1. [ DOI:10.1007/978-981-10-7272-7_1] 7. [7] T. Huynh-The and T. Le-Tien, "Brightness preserving weighted dynamic range histogram equalization for image contrast enhancement," Int. Conf. Adv. Technol. Commun., vol. 53, no. 4, pp. 386-391, 2013, doi: 10.1109/ATC.2013.6698142. [ DOI:10.1109/ATC.2013.6698142] 8. [8] C. Wang and Z. Ye, "Brightness preserving histogram equalization with maximum entropy: A variational perspective," IEEE Trans. Consum. Electron., vol. 51, no. 4, pp. 1326-1334, 2005, doi: 10.1109/TCE.2005.1561863. [ DOI:10.1109/TCE.2005.1561863] 9. [9] A. M. Reza, "Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement," J. VLSI Signal Process. Syst. Signal Image. Video Technol., vol. 38, no. 1, pp. 35-44, 2004, doi: 10.1023/B:VLSI.0000028532.53893.82. [ DOI:10.1023/B:VLSI.0000028532.53893.82] 10. [10] H. Ibrahim and N. S. P. Kong, "Brightness preserving dynamic histogram equalization for image contrast enhancement," IEEE Trans. Consum. Electron., vol. 53, no. 4, pp. 1752-1758, 2007, doi: 10.1109/TCE.2007.4429280. [ DOI:10.1109/TCE.2007.4429280] 11. [11] N. Hayat and M. Imran, "Ghost-free multi exposure image fusion technique using dense SIFT descriptor and guided filter," J. Vis. Commun. Image Represent., vol. 62, pp. 295-308, 2019, doi: 10.1016/j.jvcir.2019.06.002. [ DOI:10.1016/j.jvcir.2019.06.002] 12. [12] S. H. Lee, J. S. Park, and N. I. Cho, "A Multi-Exposure Image Fusion Based on the Adaptive Weights Reflecting the Relative Pixel Intensity and Global Gradient," Proc. - Int. Conf. Image Process. ICIP, pp. 1737-1741, 2018, doi: 10.1109/ICIP.2018.8451153. [ DOI:10.1109/ICIP.2018.8451153] 13. [13] Q. Wang, W. Chen, X. Wu, and Z. Li, "Detail-enhanced Multi-scale Exposure Fusion in YUV Color Space," vol. 2, no. i, pp. 1-12. 14. [14] S. Paul, I. S. Sevcenco, and P. Agathoklis, "Multi-Exposure and Multi-Focus Image Fusion in Gradient Domain ¤," vol. 25, no. 10, pp. 1-18, 2016, doi: 10.1142/S0218126616501231. [ DOI:10.1142/S0218126616501231] 15. [15] K. R. Prabhakar, V. S. Srikar, and R. V. Babu, "DeepFuse : A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs," no. Ev 0, pp. 4714-4722. 16. [16] J. K. Park and D. W. Park, "Application of the Ortho Image for the Cadastral Survey," Aug. 2015, pp. 113-117. doi: 10.14257/astl.2015.100.24. [ DOI:10.14257/astl.2015.100.24] 17. [17] S. H. Lee, J. S. Park, and N. I. Cho, "A Multi-Exposure Image Fusion Based on the Adaptive Weights Reflecting the Relative Pixel Intensity and Global Gradient," Proc. - Int. Conf. Image Process. ICIP, vol. 53, no. 4, pp. 1737-1741, 2018, doi: 10.1109/ICIP.2018.8451153. [ DOI:10.1109/ICIP.2018.8451153] 18. [18] L. Images, Y. Yang, W. Cao, S. Wu, and Z. Li, "Multi-Scale Fusion of Two," vol. 25, no. 12, pp. 1885-1889, 2018. [ DOI:10.1109/LSP.2018.2877893] 19. [19] D. Prasad, B. Gang, X. Junhao, and Z. Ravindra, "Multi-scale Guided Image and Video Fusion : A Fast," Circuits, Syst. Signal Process., vol. 38, no. 12, pp. 5576-5605, 2019, doi: 10.1007/s00034-019-01131-z. [ DOI:10.1007/s00034-019-01131-z] 20. [20] K. Ma, S. Member, K. Zeng, and Z. Wang, "Perceptual Quality Assessment for Multi-Exposure Image Fusion," vol. 24, no. 11, pp. 3345-3356, 2015. [ DOI:10.1109/TIP.2015.2442920] 21. [21] A. Galdran, "Image dehazing by artificial multiple-exposure image fusion," Signal Processing, vol. 149, pp. 135-147, 2018, doi: 10.1016/j.sigpro.2018.03.008. [ DOI:10.1016/j.sigpro.2018.03.008] 22. [22] J. W. Roberts, J. Van Aardt, and F. Ahmed, "Assessment of image fusion procedures using entropy , image quality , and multispectral classification," vol. 2, no. May, pp. 1-28, 2008, doi: 10.1117/1.2945910. [ DOI:10.1117/1.2945910] 23. [23] P. Jagalingam and A. Vittal, "A Review of Quality Metrics for Fused Image," Aquat. Procedia, vol. 4, no. Icwrcoe, pp. 133-142, 2015, doi: 10.1016/j.aqpro.2015.02.019. [ DOI:10.1016/j.aqpro.2015.02.019] 24. [24] G. Cui, H. Feng, Z. Xu, Q. Li, and Y. Chen, "Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition," vol. 341, pp. 199-209, 2015, doi: 10.1016/j.optcom.2014.12.032. [ DOI:10.1016/j.optcom.2014.12.032] 25. [25] I. Journal, I. Computing, C. Volume, I. International, I. Technology, and K. E. Ave, "IMAGE FUSION BASED ON AN ABSOLUTE FEATURE," vol. 3, no. 6, pp. 1433-1447, 2007. 26. [26] A. M. Eskicioglu and P. S. Fisher, "Image Quality Measures and Their Performance," vol. 43, no. 12, pp. 2959-2965, 1995. [ DOI:10.1109/26.477498] 27. [27] S. Pistonesi, J. Martinez, S. Mar, and R. Vallejos, "Structural Similarity Metrics for Quality Image Fusion Assessment : Structural Similarity Metrics for Quality Image Fusion Assessment : Algorithms Introduction Image fusion is the process of combining information available from two or more images of a sce," no. October, 2018, doi: 10.5201/ipol.2018.196. [ DOI:10.5201/ipol.2018.196] 28. [28] S. Li, R. Hong, and X. Wu, "A Novel Similarity Based Quality Metric for Image Fusion," pp. 167-172, 2008. 29. [29] Y. Chen and R. S. Blum, "A new automated quality assessment algorithm for image fusion q," Image Vis. Comput., vol. 27, no. 10, pp. 1421-1432, 2009, doi: 10.1016/j.imavis.2007.12.002. [ DOI:10.1016/j.imavis.2007.12.002] 30. [30] H. Chen and P. K. Varshney, "A human perception inspired quality metric for image fusion based on regional information," vol. 8, pp. 193-207, 2007, doi: 10.1016/j.inffus.2005.10.001. [ DOI:10.1016/j.inffus.2005.10.001] 31. [31] Y. Han, Y. Cai, Y. Cao, and X. Xu, "A new image fusion performance metric based on visual information fidelity," Inf. Fusion, vol. 14, no. 2, pp. 127-135, 2013, doi: 10.1016/j.inffus.2011.08.002. [ DOI:10.1016/j.inffus.2011.08.002]
|