[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Contact us::
Site Facilities::
Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
:: Volume 2, Issue 1 (6-2014) ::
jgit 2014, 2(1): 17-39 Back to browse issues page
Automatic Normalization of Multitemporal Satellite Images using Artificial Neural Network and Unchanged Pixels
Vahid Sadeghi * , Hamid Ebadi , Farshid Farnood Ahmadi
K.N.Toosi University of Technology
Abstract:   (6571 Views)
Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. The normalization process minimizes the radiometric differences between two images caused by inequalities in the acquisition conditions rather than changes in surface reflectance. In this paper a new automatic Relative Radiometric Normalization (RRN) method is proposed which uses an Artificial Neural Network (ANN) and unchanged pixels. The proposed method includes the following stages: 1) automatic detection of unchanged pixels based on a new idea that uses CVA method, PCA transformation and K-means clustering technique, 2) evaluation of different architectures of perceptron neural networks in order to find the best architecture for this specific task and 3) use of the aforementioned network for normalizing the subject image. The method has been implemented on two paires of reference and subject images taken by the TM sensor. Normalization results obtained from the proposed method compared with the 8 conventional methods includes: Histogram matching, Haze Correction, Minimum-Maximum, Mean-Standard deviation, Simple Regression, Linear, Quadratic and Cubic Simple Regression Using Unchanged pixels and Multi Line Regression Using Unchanged Pixels. Experimental results confirm the effectiveness of the presented technique in the automatic detection of unchanged pixels and minimizing any imaging condition effects (i.e., atmosphere and other effective parameters). The proposed method for automatic change detection shows a high capability in detection of changes in covered vegetation areas. Using of this proposed method improves normalization results in all bands, especially in the third and fourth bands which are located in the red and infrared portion of the electromagnetic spectrum. The evaluation results of modeling stage reveal that the normalization using ANN in all 6 bands of all images has produced the more optimum results compared to those of normalization with conventional methods.
Keywords: Rheology, Finite-element methods, Brittle, Geotherm, Iran.
Full-Text [PDF 1689 kb]   (1653 Downloads)    
Type of Study: Research |
Received: 2015/07/11 | Accepted: 2015/07/11 | Published: 2015/07/11
Send email to the article author

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghi V, Ebadi H, Farnood Ahmadi F. Automatic Normalization of Multitemporal Satellite Images using Artificial Neural Network and Unchanged Pixels . jgit 2014; 2 (1) :17-39
URL: http://jgit.kntu.ac.ir/article-1-110-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 2, Issue 1 (6-2014) Back to browse issues page
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.04 seconds with 35 queries by YEKTAWEB 4657