[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 7، شماره 4 - ( 12-1398 ) ::
جلد 7 شماره 4 صفحات 101-114 برگشت به فهرست نسخه ها
ارائه روشی برای استخراج الگوهای پر بازدید در خطوط سیر بر اساس توالی فعالیت های کاربران
امین حسین پور میل آغاردان، رحیم علی عباسپور، علیرضا چهرقان
دانشگاه تهران
چکیده:   (150 مشاهده)
در سال‌های اخیر فراگیر شدن استفاده از ابزارهای ثبت موقعیت مکانی، امکان تولید خطوط ‌سیر هندسی با استفاده از مسیرهای حرکت کاربران را فراهم ساخته است. بدین ترتیب می­توان علاوه بر هندسه و شکل مسیر، هدف کاربران از انجام سفر و فعالیت­های مرتبط با آن را مورد توجه قرار داد. در این راستا خط ‌سیر فعالیت کاربر که بیانگر توالی فعالیت‌های بازدید شده می­باشد، در سال­های اخیر مورد توجه بسیاری از محققین بوده است. از جمله مهمترین موضوعات مرتبط را می­توان شناسایی الگوهای پرتکرار کاربر به منظور پیش‌بینی فعالیت بعـدی ذکر کرد. عمـده مطالعات پیشین تنها با تمرکز بر داده‌هـای یک کاربر است که این دسته از مطالعات، الگوهای پرتکرار ارائه شده فعالیت­های قبلی را در نظر نمی­گیرند. برای این منظور در این مقاله روشی پیشنهاد شده است تا پس از کدگذاری فعالیت­ها و تشکیل ماتریس توالی آن­ها، الگوهای پرتکرار را با استفاده از خطوط ‌سیر تمام کاربران و در نظر گرفتن فعالیت­های قبلی شناسایی نماید. همچنین روش پیشنهادی، قابلیت شناسایی الگوهای پرتکرار را برای مبدأ، مقصد و یا یک فعالیت پربازدید ارائه می‌نماید. پس از پیاده­سازی بر روی داده­های اخذ شده از تعداد 106 کاربر در دانشگاه ام آی تی، نتایج روش پیشنهادی با دو روش بر مبنای ساختار درختی مورد مقایسه قرار گرفت. نتایج بیانگر میانگین 60 درصدی کاهش زمان محاسبات برای تشکیل پایگاه داده مرتبط و افزایش 50/17 درصدی در پیش­بینی صحیح می‌باشد.
واژه‌های کلیدی: خط سیر فعالیت، الگوی پر بازدید، ماتریس توالی.
متن کامل [PDF 1067 kb]   (68 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سیستمهای اطلاعات مکانی (عمومی)
دریافت: 1397/8/26 | پذیرش: 1398/4/18 | انتشار: 1398/12/29
فهرست منابع
1. [1] A. Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Yu, and Y. Tang, "Desteller: A system for destination prediction based on trajectories with privacy protection," Proceedings of the VLDB Endowment, vol. 6, pp. 1198-1201, 2013. [DOI:10.14778/2536274.2536275]
2. [2] V. Bogorny, B. Kuijpers, and L. O. Alvares, "ST‐DMQL: a semantic trajectory data mining query language," International Journal of Geographical Information Science, vol. 23, pp. 1245-1276, 2009. [DOI:10.1080/13658810802231449]
3. [3] N. Eagle, A. S. Pentland, and D. Lazer, "Inferring friendship network structure by using mobile phone data," Proceedings of the national academy of sciences, vol. 106, pp. 15274-15278, 2009. [DOI:10.1073/pnas.0900282106]
4. [4] R. Monclar, A. Tecla, J. Oliveira, and J. M. de Souza, "MEK: Using spatial-temporal information to improve social networks and knowledge dissemination," Information Sciences, vol. 179, pp. 2524-2537, 2009. [DOI:10.1016/j.ins.2009.01.032]
5. [5] S. S. Banerjee and R. R. Dholakia, "Mobile advertising: Does location based advertising work?," 2008.
6. [6] C.-C. Chan, Y.-C. Lin, and M.-S. Chen, "Recommendation for advertising messages on mobile devices," in Proceedings of the 23rd International Conference on World Wide Web, 2014, pp. 235-236. [DOI:10.1145/2567948.2577343]
7. [7] B. Wang, Y. Hu, G. Shou, and Z. Guo, "Trajectory Prediction in Campus Based on Markov Chains," in International Conference on Big Data Computing and Communications, 2016, pp. 145-154. [DOI:10.1007/978-3-319-42553-5_13]
8. [8] R. Hariharan and K. Toyama, "Project Lachesis: parsing and modeling location histories," in International Conference on Geographic Information Science, 2004, pp. 106-124. [DOI:10.1007/978-3-540-30231-5_8]
9. [9] M. Chen, Y. Liu, and X. Yu, "Predicting next locations with object clustering and trajectory clustering," in Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2015, pp. 344-356. [DOI:10.1007/978-3-319-18032-8_27]
10. [10] D. Ashbrook and T. Starner, "Using GPS to learn significant locations and predict movement across multiple users," Personal and Ubiquitous computing, vol. 7, pp. 275-286, 2003. [DOI:10.1007/s00779-003-0240-0]
11. [11] M. Chen, X. Yu, and Y. Liu, "Mining moving patterns for predicting next location," Information Systems, vol. 54, pp. 156-168, 2015. [DOI:10.1016/j.is.2015.07.001]
12. [12] M. Morzy, "Mining frequent trajectories of moving objects for location prediction," Machine Learning and Data Mining in Pattern Recognition, pp. 667-680, 2007. [DOI:10.1007/978-3-540-73499-4_50]
13. [13] A. Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Huang, and Z. Xu, "Destination prediction by sub-trajectory synthesis and privacy protection against such prediction," in Data Engineering (ICDE), 2013 IEEE 29th International Conference on, 2013, pp. 254-265. [DOI:10.1109/ICDE.2013.6544830]
14. [14] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti, "Wherenext: a location predictor on trajectory pattern mining," in Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, 2009, pp. 637-646. [DOI:10.1145/1557019.1557091]
15. [15] M. Boukhechba, A. Bouzouane, B. Bouchard, C. Gouin-Vallerand, and S. Giroux, "Online prediction of people's next Point-of-Interest: Concept drift support," in Human Behavior Understanding, ed: Springer, 2015, pp. 97-116. [DOI:10.1007/978-3-319-24195-1_8]
16. [16] H. Jeung, Q. Liu, H. T. Shen, and X. Zhou, "A hybrid prediction model for moving objects," in Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on, 2008, pp. 70-79. [DOI:10.1109/ICDE.2008.4497415]
17. [17] M. Morzy, "Prediction of moving object location based on frequent trajectories," in International Symposium on Computer and Information Sciences, 2006, pp. 583-592. [DOI:10.1007/11902140_62]
18. [18] G. Yavaş, D. Katsaros, Ö. Ulusoy, and Y. Manolopoulos, "A data mining approach for location prediction in mobile environments," Data & Knowledge Engineering, vol. 54, pp. 121-146, 2005. [DOI:10.1016/j.datak.2004.09.004]
19. [19] Y. Ye, Y. Zheng, Y. Chen, J. Feng, and X. Xie, "Mining individual life pattern based on location history," in Mobile Data Management: Systems, Services and Middleware, 2009. MDM'09. Tenth International Conference on, 2009, pp. 1-10. [DOI:10.1109/MDM.2009.11]
20. [20] C. I. Ezeife and Y. Su, "Mining incremental association rules with generalized FP-tree," in Conference of the Canadian Society for Computational Studies of Intelligence, 2002, pp. 147-160. [DOI:10.1007/3-540-47922-8_13]
21. [21] D. Katsaros, A. Nanopoulos, M. Karakaya, G. Yavas, Ö. Ulusoy, and Y. Manolopoulos, "Clustering mobile trajectories for resource allocation in mobile environments," in International Symposium on Intelligent Data Analysis, 2003, pp. 319-329. [DOI:10.1007/978-3-540-45231-7_30]
22. [22] C. Yu, Y. Liu, D. Yao, L. T. Yang, H. Jin, H. Chen, and Q. Ding, "Modeling user activity patterns for next-place prediction," IEEE Systems Journal, vol. 11, pp. 1060-1071, 2017. [DOI:10.1109/JSYST.2015.2445919]
ارسال پیام به نویسنده مسئول


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseinpoor Milaghardan A, Abbaspour R A, Chehreghan A. A Framework for Exploring the Frequent Patterns based on Activities Sequence. jgit. 2020; 7 (4) :101-114
URL: http://jgit.kntu.ac.ir/article-1-765-fa.html

حسین پور میل آغاردان امین، عباسپور رحیم علی، چهرقان علیرضا. ارائه روشی برای استخراج الگوهای پر بازدید در خطوط سیر بر اساس توالی فعالیت های کاربران. مهندسی فناوری اطلاعات مکانی. 1398; 7 (4) :101-114

URL: http://jgit.kntu.ac.ir/article-1-765-fa.html



دوره 7، شماره 4 - ( 12-1398 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.06 seconds with 30 queries by YEKTAWEB 4130