1. [1] F. Schiefer, T. Kattenborn, A. Frick et al., "Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 170, pp. 205-215, 2020. [ DOI:10.1016/j.isprsjprs.2020.10.015] 2. [2] P. G. Brodrick, A. B. Davies, and G. P. Asner, "Uncovering ecological patterns with convolutional neural networks," Trends in ecology & evolution, vol. 34, no. 8, pp. 734-745, 2019. [ DOI:10.1016/j.tree.2019.03.006] 3. [3] L. Ma, Y. Liu, X. Zhang et al., "Deep learning in remote sensing applications: A meta-analysis and review," ISPRS journal of photogrammetry and remote sensing, vol. 152, pp. 166-177, 2019. [ DOI:10.1016/j.isprsjprs.2019.04.015] 4. [4] D. Lobo Torres, R. Queiroz Feitosa, P. Nigri Happ et al., "Applying fully convolutional architectures for semantic segmentation of a single tree species in urban environment on high resolution UAV optical imagery," Sensors, vol. 20, no. 2, pp. 563, 2020. [ DOI:10.3390/s20020563] 5. [5] S. Hartling, V. Sagan, P. Sidike et al., "Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning," Sensors, vol. 19, no. 6, pp. 1284, 2019. [ DOI:10.3390/s19061284] 6. [6] A. A. d. Santos, J. Marcato Junior, M. S. Araújo et al., "Assessment of CNN-based methods for individual tree detection on images captured by RGB cameras attached to UAVs," Sensors, vol. 19, no. 16, pp. 3595, 2019. [ DOI:10.3390/s19163595] 7. [7] T. Kattenborn, J. Leitloff, F. Schiefer et al., "Review on Convolutional Neural Networks (CNN) in vegetation remote sensing," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 173, pp. 24-49, 2021. [ DOI:10.1016/j.isprsjprs.2020.12.010] 8. [8] G. D. Pearse, A. Y. Tan, M. S. Watt et al., "Detecting and mapping tree seedlings in UAV imagery using convolutional neural networks and field-verified data," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 168, pp. 156-169, 2020. [ DOI:10.1016/j.isprsjprs.2020.08.005] 9. [9] L. P. Osco, M. d. S. de Arruda, J. M. Junior et al., "A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 160, pp. 97-106, 2020. [ DOI:10.1016/j.isprsjprs.2019.12.010] 10. [10] W. Li, H. Fu, L. Yu et al., "Deep learning based oil palm tree detection and counting for high-resolution remote sensing images," Remote Sensing, vol. 9, no. 1, pp. 22, 2017. [ DOI:10.3390/rs9010022] 11. [11] H. Jiang, S. Chen, D. Li et al., "Papaya tree detection with UAV images using a GPU-accelerated scale-space filtering method," Remote Sensing, vol. 9, no. 7, pp. 721, 2017. [ DOI:10.3390/rs9070721] 12. [12] Y. Ampatzidis, and V. Partel, "UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence," Remote Sensing, vol. 11, no. 4, pp. 410, 2019. [ DOI:10.3390/rs11040410] 13. [13] H. A. Amirkolaee, and H. Arefi, "Height estimation from single aerial images using a deep convolutional encoder-decoder network," ISPRS journal of photogrammetry and remote sensing, vol. 149, pp. 50-66, 2019. [ DOI:10.1016/j.isprsjprs.2019.01.013] 14. [14] Y. Liu, B. Fan, L. Wang et al., "Semantic labeling in very high resolution images via a self-cascaded convolutional neural network," ISPRS journal of photogrammetry and remote sensing, vol. 145, pp. 78-95, 2018. [ DOI:10.1016/j.isprsjprs.2017.12.007] 15. [15] W. Liu, Y. Zhang, H. Fan et al., "A New Multi-Channel Deep Convolutional Neural Network for Semantic Segmentation of Remote Sensing Image," IEEE Access, vol. 8, pp. 131814-131825, 2020. [ DOI:10.1109/ACCESS.2020.3009976] 16. [16] D. Chai, S. Newsam, and J. Huang, "Aerial image semantic segmentation using DCNN predicted distance maps," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 161, pp. 309-322, 2020. [ DOI:10.1016/j.isprsjprs.2020.01.023] 17. [17] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation", In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431-3440, 2015. [ DOI:10.1109/CVPR.2015.7298965] 18. [18] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation", In International Conference on Medical image computing and computer-assisted intervention, pp. 234-241. 2015. [ DOI:10.1007/978-3-319-24574-4_28] 19. [19] V. Badrinarayanan, A. Kendall, and R. Cipolla, "Segnet: A deep convolutional encoder-decoder architecture for image segmentation," IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481-2495, 2017. [ DOI:10.1109/TPAMI.2016.2644615] 20. [20] International Society for Photogrammetry and Remote Sensing," 2D semantic labeling contest." [Online]. Available: http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html.
|