1. [1] F. D. Javan and A. Azizi, "Investigations on Applicability of Affine Transformation for Geo-Referencing of Cartosat-1 imageries," Journal of Geomatics Science and Technology, vol. 1, p. 11, 2011. 2. [2] J. Grodecki and G. Dial, "Block adjustment of high-resolution satellite images described by rational polynomials," Photogrammetric Engineering & Remote Sensing, vol. 69, pp. 59-68, 2003. [ DOI:10.14358/PERS.69.1.59] 3. [3] C. V. Tao and Y. Hu, "A comprehensive study of the rational function model for photogrammetric processing," Photogrammetric Engineering and Remote Sensing, vol. 67, pp. 1347-1358, 2001. 4. [4] C. S. Fraser and H. B. Hanley, "Bias compensation in rational functions for IKONOS satellite imagery," Photogrammetric Engineering & Remote Sensing, vol. 69, pp. 53-57, 2003. [ DOI:10.14358/PERS.69.1.53] 5. [5] A. Alizadeh, S. Kahazaie, H. Arefi, and A. Jamshidzadeh, "Automated bias compensation of RPCs of IRS-P5 Satellite Images Using DEM," journal of Geospatial Information Technology, vol. 2, p. 16, 2014. 6. [6] A. Azizi, A. Hadilou, M. Shankayi, and M. Aslani, "The Effect of Shift and Drift Errors in 3D Coordinates Extracted from IRS P5 Imagery," Geospatial Engineering Journal, vol. 4, p. 9, 2013. 7. [7] C. Li, Y. Shen, B. Li, G. Qiao, S. Liu, W. Wang, et al., "An improved geopositioning model of QuickBird high resolution satellite imagery by compensating spatial correlated errors," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 96, pp. 12-19, 2014. [ DOI:10.1016/j.isprsjprs.2014.06.010] 8. [8] R. Negadi, "Determination and Evaluation of The Landslide Volumetric Displacement Using IRS P5 Satellite Images Without GCPs," MS.C, University of Tehran, 2016. 9. [9] D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International journal of computer vision, vol. 60, pp. 91-110, 2004. [ DOI:10.1023/B:VISI.0000029664.99615.94] 10. [10] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speeded-up robust features (SURF)," Computer vision and image understanding, vol. 110, pp. 346-359, 2008. [ DOI:10.1016/j.cviu.2007.09.014] 11. [11] A. Sedaghat, M. Mokhtarzade, and H. Ebadi, "Mutual Information Similarity Measure for Scale and Rotation Invariant Image Matching," Journal of Geomatics Science and Technology, vol. 1, p. 14, 2011. 12. [12] A. Sedaghat, M. Mokhtarzade, and H. Ebadi, "Uniform robust scale-invariant feature matching for optical remote sensing images," Geoscience and Remote Sensing, IEEE Transactions on, vol. 49, pp. 4516-4527, 2011. [ DOI:10.1109/TGRS.2011.2144607] 13. [13] S. Badrloo, M. Mokhtarzade, and M. J. Valdan Zoj, "Matching of Remote Sensing Images based on Projective Transformation and Using Hopfield Neural Network," Geospatial Engineering Journal, vol. 6, p. 12, 2015. 14. [14] A. A. Goshtasby, Image registration: Principles, tools and methods: Springer Science & Business Media, 2012. [ DOI:10.1007/978-1-4471-2458-0] 15. [15] M. A. Fischler and R. C. Bolles, "Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography," Communications of the ACM, vol. 24, pp. 381-395, 1981. [ DOI:10.1145/358669.358692] 16. [16] R. Gupta and R. Hartley, "Linear pushbroom cameras," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 19, pp. 963-975, 1997. [ DOI:10.1109/34.615446] 17. [17] J. Oh, C. Lee, Y. Eo, and J. Bethel, "Automated georegistration of high-resolution satellite imagery using a RPC model with airborne lidar information," Photogrammetric Engineering & Remote Sensing, vol. 78, pp. 1045-1056, 2012. [ DOI:10.14358/PERS.78.10.1045] 18. [18] F. Hu, M. Wang, and D. Li, "A novel epipolarity model of satellite stereo-imagery based on virtual horizontal plane of object-space," in International Conference on Earth Observation Data Processing and Analysis, 2008, pp. 72851D-72851D-8. [ DOI:10.1117/12.815932] 19. [19] J.-H. Oh, S.-W. Shin, and K.-O. Kim, "Direct epipolar image generation from IKONOS stereo imagery based on RPC and parallel projection model," Korean Journal of Remote Sensing, vol. 22, pp. 451-456, 2006. 20. [20] M. F. Morgan, "Epipolar resampling of linear array scanner scenes," Ph.D., University of Calgary, Canada, 2004. 21. [21] H. Afsharnia, "Digital Elevation Model Generation from High Resolution Satellite Imagery using Constrained Least Squares Image Matching," M.Sc., Department of Surveying and Geomatics Engineering, University of Tehran, Tehran, Iran, 2010. 22. [22] N. Tatar, M. Saadatseresht, H. Arefi, and A. Hadavand, "QUASI-EPIPOLAR RESAMPLING OF HIGH RESOLUTION SATELLITE STEREO IMAGERY FOR SEMI GLOBAL MATCHING," presented at the Sensors and models in Photogrammetry and Remote Sensing (3rd SMPR), Kish Island, Iran, 2015. [ DOI:10.5194/isprsarchives-XL-1-W5-707-2015] 23. [23] M. Wang, F. Hu, and J. Li, "Epipolar resampling of linear pushbroom satellite imagery by a new epipolarity model," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, pp. 347-355, 2011. [ DOI:10.1016/j.isprsjprs.2011.01.002] 24. [24] M. Wang, F. Hu, and J. Li, "Epipolar arrangement of satellite imagery by projection trajectory simplification," The Photogrammetric Record, vol. 25, pp. 422-436, 2010. [ DOI:10.1111/j.1477-9730.2010.00602.x] 25. [25] J. Oh, "Novel Approach to Epipolar Resampling of HRSI and Satellite Stereo Imagery-based Georeferencing of Aerial Images," Ph.D, The Ohio State University, The Ohio State, USA, 2011. 26. [26] R. Hartley and A. Zisserman, Multiple view geometry in computer vision: Cambridge university press, 2003.
|