1. [1] T. Wittwer, "Regional gravity field modelling with radial basis functions," TU Delft, Delft University of Technology, 2009. 2. [2] I. Foroughi and A. Safari, "Local gravity field modeling using optimum Radial Basis Functions," M.Sc.Thesis,university of Tehran, 2013. 3. [3] F. Barthelmes, "Local gravity field approximation by point masses with optimized positions," in Proc. 6th international symposium "Geodesy and Physics of the Earth", Potsdam, 1988. 4. [4] A. N. Marchenko, Parameterization of the Earth's gravity field: point and line singularities: Astronomical and Geodetic Society, 1998. 5. [5] A. N. Marchenko and G. Potsdam, Regional geoid determination: an application to airborne gravity data in the Skagerrak: Geoforschungszentrum, 2001. 6. [6] R. Klees and T. Wittwer, "Local gravity field modelling with multi-pole wavelets," in Dynamic Planet, 2007, pp. 303-308. 7. [7] W. K. Msrkus Antoni, "Recovery of residual GRACE-observations by radial base functions." 8. [8] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence: MIT press, 1992. 9. [9] A. Golbabai and A. Safdari-Vaighani, "Width optimization of Gaussian function by genetic algorithm in RBF networks," World Journal of Modelling and Simulation, vol. 7, pp. 307-311, 2011. 10. [10] F. Barthelmes, "Definition of functionals of the geopotential and their calculation from spherical harmonic models," Helmholtz Centre Potsdam, GFZ, 2009. 11. [11] A. Safari, M. Sharifi, and I. Foroughi, "Local gravity field modeling using radial basis functions, case study: coastal area of the Persian Gulf," Journal of the EARTH and SPACE PHYSICS, vol. 39, pp. 33-48, 2013. 12. [12] R. Klees, R. Tenzer, I. Prutkin, and T. Wittwer, "A data-driven approach to local gravity field modelling using spherical radial basis functions," Journal of Geodesy, vol. 82, pp. 457-471, 2008. [ DOI:10.1007/s00190-007-0196-3] 13. [13] R. Tenzer and R. Klees, "The choice of the spherical radial basis functions in local gravity field modeling," Studia Geophysica et Geodaetica, vol. 52, pp. 287-304, 2008. [ DOI:10.1007/s11200-008-0022-2] 14. [14] M.Alireza, "Genetic algorithms and applications," Tehran,Naghus Publisher, 2014. 15. [15] M.S.Javi, "Solution of practical problems with genetic algorithms," Tehran,Ariapajuh Publisher, 2012. 16. [16] N. E. Mastorakis, "On the solution of Ill-conditioned systems of linear and non-linear equations via genetic algorithms(GAs) and nelder-mead simplex search, " WSEAS Transactions on Information Science and Applications, vol. 2, pp. 460-466, 2005. 17. [17] R. L. Haupt and S. E. Haupt, Practical genetic algorithms: John Wiley & Sons, 2004. 18. [18] S.M.Kia, "Genetic algorithms in Matlab," Tehran,Kian publisher, 2012. 19. [19] N. E. Mastorakis, "Solving non-linear equations via genetic algorithms," Lisbon, Portugal, June, pp. 16-18, 2005. 20. [20] L. Bajer and M. Holena, "RBF-based surrogate model for evolutionary optimization," in ITAT, 2012, pp. 3-8. 21. [21] H. W. Engl and P. Kügler, "Nonlinear inverse problems: theoretical aspects and some industrial applications," in Multidisciplinary methods for analysis optimization and control of complex systems, ed: Springer, 2005, pp. 3-47. [ DOI:10.1007/3-540-27167-8_1] 22. [22] P. C. Hansen, "Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems," Numerical algorithms, vol. 6, pp. 1-35, 1994. [ DOI:10.1007/BF02149761] 23. [23] G. H. Golub, M. Heath, and G. Wahba, "Generalized cross-validation as a method for choosing a good ridge parameter," Technometrics, vol. 21, pp. 215-223, 1979. [ DOI:10.1080/00401706.1979.10489751] 24. [24] N. Neves, A.-T. Nguyen, and E. L. Torres, "A study of a non-linear optimization problem using a distributed genetic algorithm," in Parallel Processing, 1996. Vol. 3. Software., Proceedings of the 1996 International Conference on, 1996, pp. 29-36. [ DOI:10.1109/ICPP.1996.537378]
|