1. [1] A. R. John and J. Xiuping, "Remote Sensing Digital Image Analysis," N. Y. Springer-Verl. Berl. Heidelb., p. 55, 2006. 2. [2] H. Grahn and P. Geladi, Techniques and applications of hyperspectral image analysis. John Wiley & Sons, 2007. [ DOI:10.1002/9780470010884] 3. [3] D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17–28, 2002. [ DOI:10.1109/79.974718] 4. [4] M. T. Eismann, "Hyperspectral remote sensing," 2012. 5. [5] R. B. Smith, "Introduction to hyperspectral imaging," Microimages Retrieved June, vol. 30, p. 2008, 2006. 6. [6] A. Singh, "Review article digital change detection techniques using remotely-sensed data," Int. J. Remote Sens., vol. 10, no. 6, pp. 989–1003, 1989. [ DOI:10.1080/01431168908903939] 7. [7] P. R. Coppin and M. E. Bauer, "Digital change detection in forest ecosystems with remote sensing imagery," Remote Sens. Rev., vol. 13, no. 3–4, pp. 207–234, 1996. [ DOI:10.1080/02757259609532305] 8. [8] M. Goswami and M. V. Khire, "Land Use and Land Cover Change Detection for Urban Sprawl Analysis of Ahmedabad City using Multitemporal Landsat Data," Int. J. Adv. Remote Sens. GIS, p. pp–1670, 2016. 9. [9] L. Ma et al., "Object-Based Change Detection in Urban Areas: The Effects of Segmentation Strategy, Scale, and Feature Space on Unsupervised Methods," Remote Sens., vol. 8, no. 9, p. 761, 2016. [ DOI:10.3390/rs8090761] 10. [10] S. Touati, M. Naylor, and I. Main, "Detection of change points in underlying earthquake rates, with application to global mega-earthquakes," Geophys. J. Int., vol. 204, no. 2, pp. 753–767, 2016. 11. [11] X. Chen, L. Vierling, and D. Deering, "A simple and effective radiometric correction method to improve landscape change detection across sensors and across time," Remote Sens. Environ., vol. 98, no. 1, pp. 63–79, 2005. [ DOI:10.1016/j.rse.2005.05.021] 12. [12] M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley, "Change detection from remotely sensed images: From pixel-based to object-based approaches," ISPRS J. Photogramm. Remote Sens., vol. 80, pp. 91–106, 2013. [ DOI:10.1016/j.isprsjprs.2013.03.006] 13. [13] R. Garrard, T. Kohler, M. F. Price, A. C. Byers, A. R. Sherpa, and G. R. Maharjan, "Land Use and Land Cover Change in Sagarmatha National Park, a World Heritage Site in the Himalayas of Eastern Nepal," Mt. Res. Dev., vol. 36, no. 3, pp. 299–310, 2016. [ DOI:10.1659/MRD-JOURNAL-D-15-00005.1] 14. [14] G. Gutman and V. Radeloff, Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet :union: in 1991. Springer, 2016. 15. [15] A. Popp et al., "Land-use futures in the shared socio-economic pathways," Glob. Environ. Change, 2016. 16. [16] K. Saez de Biku-a, M. Z. Hauschild, K. Pilegaard, and A. Ibrom, "Environmental performance of gasified willow from different lands including land-use changes," GCB Bioenergy, 2016. 17. [17] E. Ustaoglu, C. P. Castillo, C. Jacobs-Crisioni, and C. Lavalle, "Economic evaluation of agricultural land to assess land use changes," Land Use Policy, vol. 56, pp. 125–146, 2016. [ DOI:10.1016/j.landusepol.2016.04.020] 18. [18] F. Bovolo, S. Marchesi, and L. Bruzzone, "A framework for automatic and unsupervised detection of multiple changes in multitemporal images," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 6, pp. 2196–2212, 2012. [ DOI:10.1109/TGRS.2011.2171493] 19. [19] C. Wu, L. Zhang, and B. Du, "Targeted change detection for stacked multi-temporal hyperspectral image," in Hyperspectral Image and Signal Processing (WHISPERS), 2012 4th Workshop on, 2012, pp. 1–4. [ DOI:10.1109/WHISPERS.2012.6874282] 20. [20] C. Wu, B. Du, and L. Zhang, "A subspace-based change detection method for hyperspectral images," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 6, no. 2, pp. 815–830, 2013. [ DOI:10.1109/JSTARS.2013.2241396] 21. [21] Y. Yuan, H. Lv, and X. Lu, "Semi-supervised change detection method for multi-temporal hyperspectral images," Neurocomputing, vol. 148, pp. 363–375, 2015. [ DOI:10.1016/j.neucom.2014.06.024] 22. [22] A. Ertürk and A. Plaza, "Informative change detection by unmixing for hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 6, pp. 1252–1256, 2015. [ DOI:10.1109/LGRS.2015.2390973] 23. [23] S. Liu, L. Bruzzone, F. Bovolo, and P. Du, "Unsupervised multitemporal spectral unmixing for detecting multiple changes in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 5, pp. 2733–2748, 2016. [ DOI:10.1109/TGRS.2015.2505183] 24. [24] R. Shah-Hosseini, S. Homayouni, and A. Safari, "A hybrid kernel-based change detection method for remotely sensed data in a similarity space," Remote Sens., vol. 7, no. 10, pp. 12829–12858, 2015. [ DOI:10.3390/rs71012829] 25. [25] G. Camps-Valls, "A Note on the Kernel Spectral Angle Mapper," Electron. Lett., 2016. [ DOI:10.1049/el.2016.0661] 26. [26] X. Liu and C. Yang, "A kernel spectral angle mapper algorithm for remote sensing image classification," in Image and Signal Processing (CISP), 2013 6th International Congress on, 2013, vol. 2, pp. 814–818. [ DOI:10.1109/CISP.2013.6745277] 27. [27] A. Chen, H. Zhao, and Z. Pei, "Is Time Series Smoothing Function Necessary for Crop Mapping?—Evidence from Spectral Angle Mapper After Empirical Analysis," in Computer and Computing Technologies in Agriculture IX: 9th IFIP WG 5.14 International Conference, CCTA 2015, Beijing, China, September 27-30, 2015, Revised Selected Papers, Part I, 2016, pp. 335–347. 28. [28] E. Hasan, T. Fagin, Z. El Alfy, and Y. Hong, "Spectral Angle Mapper and aeromagnetic data integration for gold-associated alteration zone mapping: a case study for the Central Eastern Desert Egypt," Int. J. Remote Sens., vol. 37, no. 8, pp. 1762–1776, 2016. [ DOI:10.1080/01431161.2016.1165887] 29. [29] H. Zhuang, K. Deng, H. Fan, and M. Yu, "Strategies Combining Spectral Angle Mapper and Change Vector Analysis to Unsupervised Change Detection in Multispectral Images," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 5, pp. 681–685, 2016. [ DOI:10.1109/LGRS.2016.2536058] 30. [30] G. Camps-Valls, L. Bruzzone, and others, Kernel methods for remote sensing data analysis, vol. 2. Wiley Online Library, 2009. [ DOI:10.1002/9780470748992] 31. [31] M. Fauvel, J. Chanussot, and J. A. Benediktsson, "Evaluation of kernels for multiclass classification of hyperspectral remote sensing data," in 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, 2006, vol. 2, pp. II–II. [ DOI:10.1109/ICASSP.2006.1660467] 32. [32] M. Fauvel, J. Chanussot, and J. A. Benediktsson, "A spatial–spectral kernel-based approach for the classification of remote-sensing images," Pattern Recognit., vol. 45, no. 1, pp. 381–392, 2012. [ DOI:10.1016/j.patcog.2011.03.035] 33. [33] M. A. Mahjoub and others, "Image segmentation by adaptive distance based on EM algorithm," ArXiv Prepr. ArXiv12041629, 2012. 34. [34] B. Datt, T. R. McVicar, T. G. Van Niel, D. L. Jupp, and J. S. Pearlman, "Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 6, pp. 1246–1259, 2003. [ DOI:10.1109/TGRS.2003.813206] 35. [35] D. Scheffler and P. Karrasch, "Preprocessing of hyperspectral images: A comparative study of destriping algorithms for EO1-Hyperion," in SPIE Remote Sensing, 2013, p. 88920H–88920H. [ DOI:10.1117/12.2028733] 36. [36] H. Li, D. Zhang, Y. Zhang, and Y. Xu, "Research of image preprocessing methods for EO-1 Hyperion hyperspectral data in tidal flat area," Geoinformatics, p. 71471G–71471G, 2008. [ DOI:10.1117/12.813253]
|