[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 6, Issue 4 (3-2019) ::
jgit 2019, 6(4): 73-96 Back to browse issues page
Presenting a Morphological Based Approach for Filtering The Point Cloud to Extract the Digital Terrain Model
Parham Pahlavani * , Hamid Reza Sahraiian , Behnaz Bigdeli
University of Tehran
Abstract:   (7636 Views)
The Digital terrain model is an important geospatial product used as the basis of many practical projects related to geospatial information. Nowadays, a dense point cloud can be generated using the LiDAR data. Actually, the acquired point cloud of the LiDAR, presents a digital surface model that contains ground and non-ground objects. The purpose of this paper is to present a new approach of extracting the digital terrain model from the digital surface model. In the first step, noises were removed by preprocessing; then the irregular point cloud was converted to raster data. In the next step, the proposed gradual geodesic dilation and labeling approaches scan were applied in order to detect and eliminate the non-ground objects. The basis of gradual geodesic dilation approach was to increase the structural element size in each step, investigate the height heterogeneity and remove the non-ground objects, gradually. Also, utilizing the innovative scan labeling approach which operated based on slope differential helped to remove the non-ground objects completely.
Finally, the non-ground objects were removed and the lost regions were retrieved and the digital terrain model was generated by interpolation. For analyzing the proposed approach, the reference data of the ISPRS was employed. The analyzing results in the five test areas indicated 4.61%, 6.97% and 3.17% for Type I, Type II and total errors, respectively. These results clarify the good performance of the proposed approach for detecting the non-ground objects.
Keywords: Digital Terrain Model, Point Cloud, Geodesic Dilation, Labeling, non-Ground Objects
Full-Text [PDF 2024 kb]   (1038 Downloads)    
Type of Study: Research | Subject: GIS
Received: 2017/11/1 | Accepted: 2018/02/12 | Published: 2019/03/20
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pahlavani P, Sahraiian H R, Bigdeli B. Presenting a Morphological Based Approach for Filtering The Point Cloud to Extract the Digital Terrain Model. jgit 2019; 6 (4) :73-96
URL: http://jgit.kntu.ac.ir/article-1-645-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 6, Issue 4 (3-2019) Back to browse issues page
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.04 seconds with 36 queries by YEKTAWEB 4660