[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 324
نرخ پذیرش: 63.1
نرخ رد: 36.9
میانگین داوری: 208 روز
میانگین انتشار: 345 روز
..
:: دوره 6، شماره 4 - ( 12-1397 ) ::
جلد 6 شماره 4 صفحات 117-97 برگشت به فهرست نسخه ها
آشکارسازی تغییرات زیر پیکسلی کاربری اراضی در تصاویر ابرطیفی مبتنی بر جداسازی طیفی و پس‌پردازش
مهدی حسنلو ، سید تیمور سیدی*
دانشگاه تهران
چکیده:   (3575 مشاهده)
امروزه سنجش‌ازدور با دارا بودن توان تفکیک مکانی و طیفی بالا، پوشش گسترده و با کمترین هزینه برای دریافت داده از زمین، نقش کلیدی را در حوزه پژوهش‌های علوم زمین و پایش محیط‌زیست ازجمله آشکارسازی تغییرات داشته است. به‌طورکلی تشخیص بهموقع و دقیق تغییرات در مقیاس محلی و جهانی، در مدیریت بهینه‌ی استفاده از منابع، از اهمیت بالایی برخوردار است. تصاویر فراطیفی، به‌علت دارا بودن توان تفکیک طیفی بالا، نتایج بهبود یافته‌ای از آشکاری‌سازی تغییرات و همچنین جزئیات بیشتری از فرآیند آشکارسازی تغییرات را فراهم می‌نمایند. استفاده از روش‌های مبتنی بر جداسازی طیفی روی تصاویر فراطیفی، توانمندی بسیار بالایی برای دست یافتن به اطلاعات مهم زیرپیسکل دارد. در این پژوهش یک روش آشکارسازی تغییرات با استفاده از الگوریتم‌های تفاضل‌گیری، اتسو و جداسازی طیفی ارائه گردیده است. یکی از مهمترین قابلیت‌های روش پیشنهادی، بهبود توان تفکیک مکانی نقشه تغییرات است. همچنین علاوه بر تهیه نقشه تغییرات به‌صورت دودویی و خودکار، قادر به استخراج اطلاعات درباره ماهیت کلاس‌های تغییر نیز و دستیابی به تغییرات در زیرپیکسل میباشد. به‌منظور ارزیابی کارایی و دقت روش پیشنهادی، از دو مجموعه داده‌ی چند زمانه‌ی فراطیفی به‌کارگرفته شد. داده اول از سنجنده‌ی هایپریون، مربوط به مزارع کشاورزی اطراف شهر جیانگسو واقع در چین است. به‌منظور کاهش خطای تهیه نقشه واقعیت زمینی و افزایش اعتمادپذیری؛ یک داده شبیهسازی شده از سنجنده هوابرد اوریس؛ تهیه گردید. ارزیابی خروجی‌های به‌دست‌آمده نشان‌دهنده، دقت کلی بالا و نرخ کم هشدارهای روش پیشنهادی، در مقایسه با روش‌های رایج آشکارسازیِ تغییرات، است، به‌طوری‌که دقت کلی برای داده چین، با دقت کلی بالای 91%، ضریب کاپا 85/0، نرخ هشدارهای اشتباه کلی کمتر از 7% و هزینه محاسباتی و نسبتا پایین نسبت به روش‌های متداول حکایت می‌کند. علاوه نتایج به‌دست برای داده شبیه¬سازی شده، 80/99 درصد ضریب کاپا، 82/0 و میزان نرخ هشدارهای اشتباه آن، 19/0 درصد است.
واژه‌های کلیدی: آشکارسازی تغییرات، تصاویر فراطیفی، جداسازی طیفی، الگوریتم اتسو، زیر پیکسل
متن کامل [PDF 1554 kb]   (1140 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1395/8/19 | پذیرش: 1396/12/7 | انتشار: 1397/12/29
فهرست منابع
1. [1] X. C. Chen, V. Kumar, and J. H. Faghmous, "Online Change Detection Algorithm for Noisy Time-Series: An Application Tonear-Real Time Burned Area Mapping," in 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 2015, pp. 1536-1537. [DOI:10.1109/ICDMW.2015.237]
2. [2] S. T. Seydi and M. Hasanlou, "A new land-cover match-based change detection for hyperspectral imagery," Eur. J. Remote Sens., vol. 50, no. 1, pp. 517-533, 2017. [DOI:10.1080/22797254.2017.1367963]
3. [3] S. Liu, L. Bruzzone, F. Bovolo, and P. Du, "A novel hierarchical method for change detection in multitemporal hyperspectral images," in 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, 2013, pp. 823-826. [DOI:10.1109/IGARSS.2013.6721285]
4. [4] A. M. Melesse, Q. Weng, P. S. Thenkabail, and G. B. Senay, "Remote sensing sensors and applications in environmental resources mapping and modelling," Sensors, vol. 7, no. 12, pp. 3209-3241, 2007. [DOI:10.3390/s7123209]
5. [5] S. Liu, "Advanced Techniques for Automatic Change Detection in Multitemporal Hyperspectral Images," University of Trento, 2015.
6. [6] M. Hasanlou, F. Samadzadegan, and S. Homayouni, "SVM-based hyperspectral image classification using intrinsic dimension," Arab. J. Geosci., vol. 8, no. 1, pp. 477-487, 2015. [DOI:10.1007/s12517-013-1141-9]
7. [7] C. Zhao, W. Li, G. A. Sanchez-Azofeifa, B. Qi, and B. Cui, "Improved collaborative representation model with multitask learning using spatial support for target detection in hyperspectral imagery," J. Appl. Remote Sens., vol. 10, no. 1, pp. 016009-016009, 2016. [DOI:10.1117/1.JRS.10.016009]
8. [8] L. Henits, C. Jürgens, and L. Mucsi, "Seasonal multitemporal land-cover classification and change detection analysis of Bochum, Germany, using multitemporal Landsat TM data," Int. J. Remote Sens., vol. 37, no. 15, pp. 3439-3454, 2016. [DOI:10.1080/01431161.2015.1125558]
9. [9] A. Anees, J. Aryal, M. M. O'Reilly, and T. J. Gale, "A relative density ratio-based framework for detection of land cover changes in MODIS NDVI time series," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 9, no. 8, pp. 3359-3371, 2016. [DOI:10.1109/JSTARS.2015.2428306]
10. [10] A. Singh, "Review article digital change detection techniques using remotely-sensed data," Int. J. Remote Sens., vol. 10, no. 6, pp. 989-1003, 1989. [DOI:10.1080/01431168908903939]
11. [11] C. Wu, B. Du, and L. Zhang, "A subspace-based change detection method for hyperspectral images," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 6, no. 2, pp. 815-830, 2013. [DOI:10.1109/JSTARS.2013.2241396]
12. [12] R. B. Smith, "Introduction to hyperspectral imaging," Microimages Retrieved June, vol. 30, p. 2008, 2006.
13. [13] M. T. Eismann, J. Meola, and R. C. Hardie, "Hyperspectral change detection in the presenceof diurnal and seasonal variations," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 1, pp. 237-249, 2008. [DOI:10.1109/TGRS.2007.907973]
14. [14] R. Shah-Hosseini, S. Homayouni, and A. Safari, "A hybrid kernel-based change detection method for remotely sensed data in a similarity space," Remote Sens., vol. 7, no. 10, pp. 12829-12858, 2015. [DOI:10.3390/rs71012829]
15. [15] Q. Du, L. Wasson, and R. King, "Unsupervised linear unmixing for change detection in multitemporal airborne hyperspectral imagery," in International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005., 2005, pp. 136-140.
16. [16] M. T. Eismann, J. Meola, and R. C. Hardie, "Hyperspectral change detection in the presenceof diurnal and seasonal variations," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 1, pp. 237-249, 2008. [DOI:10.1109/TGRS.2007.907973]
17. [17] P. Marpu, P. Gamba, and J. A. Benediktsson, "Hyperspectral change detection using IR-MAD and feature reduction," in Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, 2011, pp. 98-101. [DOI:10.1109/IGARSS.2011.6048907]
18. [18] C. Wu, L. Zhang, and B. Du, "Targeted change detection for stacked multi-temporal hyperspectral image," in 2012 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2012, pp. 1-4. [DOI:10.1109/WHISPERS.2012.6874282]
19. [19] Y. Yuan, H. Lv, and X. Lu, "Semi-supervised change detection method for multi-temporal hyperspectral images," Neurocomputing, vol. 148, pp. 363-375, 2015. [DOI:10.1016/j.neucom.2014.06.024]
20. [20] A. Ertürk and A. Plaza, "Informative change detection by unmixing for hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 6, pp. 1252-1256, 2015. [DOI:10.1109/LGRS.2015.2390973]
21. [21] S. Liu, L. Bruzzone, F. Bovolo, and P. Du, "Unsupervised Multitemporal Spectral Unmixing for Detecting Multiple Changes in Hyperspectral Images," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 5, pp. 2733-2748, 2016. [DOI:10.1109/TGRS.2015.2505183]
22. [22] S. Liu, L. Bruzzone, F. Bovolo, and P. Du, "Hierarchical unsupervised change detection in multitemporal hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 244-260, 2015. [DOI:10.1109/TGRS.2014.2321277]
23. [23] F. Bovolo, S. Marchesi, and L. Bruzzone, "A framework for automatic and unsupervised detection of multiple changes in multitemporal images," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 6, pp. 2196-2212, 2012. [DOI:10.1109/TGRS.2011.2171493]
24. [24] [24] L. Bruzzone and F. Bovolo, "A novel framework for the design of change-detection systems for very-high-resolution remote sensing images," Proc. IEEE, vol. 101, no. 3, pp. 609-630, 2013. [DOI:10.1109/JPROC.2012.2197169]
25. [25] L. Bruzzone, S. Liu, F. Bovolo, and P. Du, "Change Detection in Multitemporal Hyperspectral Images," in Multitemporal Remote Sensing, Springer, 2016, pp. 63-88. [DOI:10.1007/978-3-319-47037-5_4]
26. [26] M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley, "Change detection from remotely sensed images: From pixel-based to object-based approaches," ISPRS J. Photogramm. Remote Sens., vol. 80, pp. 91-106, 2013. [DOI:10.1016/j.isprsjprs.2013.03.006]
27. [27] R. Shah-Hosseini, S. Homayouni, and A. Safari, "A hybrid kernel-based change detection method for remotely sensed data in a similarity space," Remote Sens., vol. 7, no. 10, pp. 12829-12858, 2015. [DOI:10.3390/rs71012829]
28. [28] M. Hasanlou and S. T. Seydi, "Novel Wetland and Water Body Change Detction using Multitemporal Hyperspectral Imagery," presented at the International Water Conference 2016 on Water Resources in Arid Areas, Oman,Muscat, 2016.
29. [29] C. Wu, B. Du, and L. Zhang, "A subspace-based change detection method for hyperspectral images," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 6, no. 2, pp. 815-830, 2013. [DOI:10.1109/JSTARS.2013.2241396]
30. [30] A. Singh, "Review article digital change detection techniques using remotely-sensed data," Int. J. Remote Sens., vol. 10, no. 6, pp. 989-1003, 1989. [DOI:10.1080/01431168908903939]
31. [31] M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley, "Change detection from remotely sensed images: From pixel-based to object-based approaches," ISPRS J. Photogramm. Remote Sens., vol. 80, pp. 91-106, 2013. [DOI:10.1016/j.isprsjprs.2013.03.006]
32. [32] S. T. Seydi and M. Hasanlou, "Fusion of Similarity and Distance based Methods for Landcover Change Detection using Hyperpsectral Imagey," J. Geomat. Sci. Technol., vol. 7, no. 2, pp. 111-126, 2017.
33. [33] K. Vongsy, M. J. Mendenhall, P. M. Hanna, and J. Kaufman, "Change detection using synthetic hyperspectral imagery," in 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2009, pp. 1-4. [DOI:10.1109/WHISPERS.2009.5289016]
34. [34] A. Ertürk, M.-D. Iordache, and A. Plaza, "Sparse Unmixing With Dictionary Pruning for Hyperspectral Change Detection," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 10, no. 1, pp. 321-330, 2017. [DOI:10.1109/JSTARS.2016.2606514]
35. [35] X. Xu and Z. Shi, "Multi-objective based spectral unmixing for hyperspectral images," ISPRS J. Photogramm. Remote Sens., vol. 124, pp. 54-69, 2017. [DOI:10.1016/j.isprsjprs.2016.12.010]
36. [36] A. Ertürk, M. K. Güllü, D. Çeşmeci, D. Gerçek, and S. Ertürk, "Spatial resolution enhancement of hyperspectral images using unmixing and binary particle swarm optimization," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 12, pp. 2100-2104, 2014. [DOI:10.1109/LGRS.2014.2320135]
37. [37] D. Gudex-Cross, J. Pontius, and A. Adams, "Enhanced forest cover mapping using spectral unmixing and object-based classification of multi-temporal Landsat imagery," Remote Sens. Environ., vol. 196, pp. 193-204, 2017. [DOI:10.1016/j.rse.2017.05.006]
38. [38] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Sparse unmixing of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2014-2039, 2011. [DOI:10.1109/TGRS.2010.2098413]
39. [39] D. C. Heinz and others, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, 2001. [DOI:10.1109/36.911111]
40. [40] N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44-57, 2002. [DOI:10.1109/79.974727]
41. [41] J. M. Nascimento and J. M. Bioucas-Dias, "Hyperspectral signal subspace estimation," in 2007 IEEE International Geoscience and Remote Sensing Symposium, 2007, pp. 3225-3228. [DOI:10.1109/IGARSS.2007.4423531]
42. [42] M. E. Winter, "N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data," in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, 1999, pp. 266-275. [DOI:10.1117/12.366289]
43. [43] C.-I. Chang, C.-C. Wu, and C.-T. Tsai, "Random N-finder (N-FINDR) endmember extraction algorithms for hyperspectral imagery," IEEE Trans. Image Process., vol. 20, no. 3, pp. 641-656, 2011. [DOI:10.1109/TIP.2010.2071310]
44. [44] H. Li, D. Zhang, Y. Zhang, and Y. Xu, "Research of image preprocessing methods for EO-1 Hyperion hyperspectral data in tidal flat area," in Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images, 2008, p. 71471G-71471G. [DOI:10.1117/12.813253]
45. [45] D. Scheffler and P. Karrasch, "Preprocessing of hyperspectral images: a comparative study of destriping algorithms for EO1-hyperion," in SPIE Remote Sensing, 2013, p. 88920H-88920H. [DOI:10.1117/12.2028733]
46. [46] A. A. Nielsen, "The regularized iteratively reweighted MAD method for change detection in multi-and hyperspectral data," IEEE Trans. Image Process., vol. 16, no. 2, pp. 463-478, 2007. [DOI:10.1109/TIP.2006.888195]
47. [47] O. Ahlqvist, "Extending post-classification change detection using semantic similarity metrics to overcome class heterogeneity: A study of 1992 and 2001 US National Land Cover Database changes," Remote Sens. Environ., vol. 112, no. 3, pp. 1226-1241, 2008. [DOI:10.1016/j.rse.2007.08.012]
48. [48] M. Gong, Z. Zhou, and J. Ma, "Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering," IEEE Trans. Image Process., vol. 21, no. 4, pp. 2141-2151, 2012. [DOI:10.1109/TIP.2011.2170702]



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasanlou M, Seydi S T. Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing. jgit 2019; 6 (4) :97-117
URL: http://jgit.kntu.ac.ir/article-1-646-fa.html

حسنلو مهدی، سیدی سید تیمور. آشکارسازی تغییرات زیر پیکسلی کاربری اراضی در تصاویر ابرطیفی مبتنی بر جداسازی طیفی و پس‌پردازش. مهندسی فناوری اطلاعات مکانی. 1397; 6 (4) :97-117

URL: http://jgit.kntu.ac.ir/article-1-646-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 6، شماره 4 - ( 12-1397 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 38 queries by YEKTAWEB 4660