[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 9، شماره 2 - ( 7-1400 ) ::
جلد 9 شماره 2 صفحات 27-1 برگشت به فهرست نسخه ها
طبقه بندی تصاویر ابرطیفی با استفاده از ادغام ویژگی های طیفی و مکانی در شبکه های عصبی پیچشی
عبید شریفی*، بهنام اصغری بیرامی، مهدی مختارزاده
دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده:   (110 مشاهده)
سنجنده­ های ابرطیفی به واسطه اخذ تعداد زیادی از باندهای طیفی همواره دارای اهمیت خاصی در پایش پدیده ­های سطح زمین می ­باشند. طبقه­ بندی تصاویر ابرطیفی مهم­ترین روش پردازش داده­ های ابرطیفی می ­باشد که تا به حال تلاش­ های زیادی برای افزایش دقت آن صورت گرفته است. شبکه­ های عصبی پیچشی و ویژگی­ های مکانی در سال­ های اخیر جایگاه مهمی در بهبود دقت طبقه­ بندی تصاویر ابرطیفی داشته­ اند. در تحقیقات پیشین توجه زیادی به استفاده همزمان از قابلیت ­های روش ­های استخراج ویژگی مکانی در شبکه­ های عصبی پیچشی نشده است. به همین دلیل در مقاله حاضر یک معماری جدید از شبکه­ های عصبی پیچشی برای طبقه­ بندی تصاویر ابرطیفی معرفی شده است که به عنوان ورودی شبکه از بردار طیفی­_مکانی حاصل از ترکیبات مختلف ویژگی­ های مکانی شامل  پروفایل ­های مورفولوژی، بانک فیلترگابور و الگوی باینری محلی(LBP) با ویژگی­ های طیفی استخراج شده از روش تبدیل مولفه اصلی استفاده می ­کند. آزمایش ­های این مقاله که بر روی دو تصویر ابرطیفی حقیقی از دو منطقه کشاورزی و شهری صورت گرفته است، نشان از برتری روش پیشنهادی دارد. نتایج نهایی نشان می­ دهد که دقت کلی طبقه ­بندی با روش پیشنهادی می ­تواند در بهترین حالت  2/5 درصد از روش ­های رقیب بهتر باشد.
واژه‌های کلیدی: طبقه بندی تصاویر ابرطیفی، شبکه های عصبی پیچشی، پروفایل های مورفولوژی، بانک فیلتر گابور، الگوی باینری محلی (LBP)
متن کامل [PDF 2191 kb]   (54 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1398/5/7 | پذیرش: 1398/10/8 | انتشار: 1400/7/30
فهرست منابع
1. [1] G. Foody, M. Giles, and A. Mathur, " A relative evaluation of multiclass image classification by support vector machines " , IEEE Transactions on geoscience and remote sensing 42, 2004. [DOI:10.1109/TGRS.2004.827257]
2. [2] F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines", IEEE Transactions on geoscience and remote sensing 42, 2004. [DOI:10.1117/12.514275]
3. [3] JA. Gualtieri and S. Chettri, " Support vector machines for classification of hyperspectral data", In IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium, vol. 2, pp. 813-815. IEEE, 2000.
4. [4] PM. Atkinson and ARL.Tatnall, "Introduction neural networks in remote sensing", International Journal of remote sensing 18, pp. 699-709, 1997. [DOI:10.1080/014311697218700]
5. [5] L. Bruzzone, and DF. Prieto, "A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images", IEEE transactions on geoscience and remote sensing 37, pp. 1179-1184, 1999. [DOI:10.1109/36.752239]
6. [6] G. Cybenko, "Approximation by superpositions of a sigmoidal function", Mathematics of control, signals and systems 2, pp. 303-314, 1989. [DOI:10.1007/BF02551274]
7. [7] K. Hornik, "Approximation capabilities of multilayer feedforward networks", Neural networks 4, pp. 251-257, 1991. [DOI:10.1016/0893-6080(91)90009-T]
8. [8] MD. Richard, and RP. Lippmann, "Neural network classifiers estimate Bayesiana posterioriprobabilities", Neural computation 3, pp. 461-483, 1991. [DOI:10.1162/neco.1991.3.4.461]
9. [9] D.Michie, D.J.Spiegelhalter, and C.C. Taylor, " Machine Learning, Neural, and Statistical Classification" London, U.K.:Ellis Horwood, 1994.
10. [10] GE. Hinton and RR. Salakhutdinov, "Reducing the dimensionality of data with neural networks" science 313, pp. 504-507, 2006. [DOI:10.1126/science.1127647]
11. [11] G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006. [DOI:10.1126/science.1127647]
12. [12] NL. Roux, and Y. Bengio, "Deep belief networks are compact universal approximators", Neural computation 22, pp. 2192-2207, 2010. [DOI:10.1162/neco.2010.08-09-1081]
13. [13] R. Salakhutdinov, Ruslan, and G. Hinton, "Deep boltzmann machines", In Artificial intelligence and statistics, pp. 448-455, 2009.
14. [14] Y. Chen, L. Zhouhan, X. Zhao, G. Wang, Y. Gu, "Deep learning-based classification of hyperspectral data", IEEE Journal of Selected topics in applied earth observations and remote sensing 7, pp. 2094-2107, 2014. [DOI:10.1109/JSTARS.2014.2329330]
15. [15] A. Krizhevsky, I. Sutskever, and GE. Hinton, "Imagenet classification with deep convolutional neural networks", In Advances in neural information processing systems, pp. 1097-1105, 2012.
16. [16] X. Liang, X. Chunyan, X. Shen, J. Yang, S. Liu, J. Tang, L. Lin, and S. Yan, "Human parsing with contextualized convolutional neural network", In Proceedings of the IEEE International Conference on Computer Vision, pp. 1386-1394, 2015. [DOI:10.1109/ICCV.2015.163]
17. [17] C. Xu, C. Lu, X. Liang, J. Gao, W. Zheng, T. Wang, and S. Yan, "Multi-loss regularized deep neural network", IEEE Transactions on Circuits and Systems for Video Technology 26, pp. 2273-2283, 2015. [DOI:10.1109/TCSVT.2015.2477937]
18. [18] C. Gan, N. Wang, Y. Yang, DY. Yeung, and AG. Hauptmann, "Devnet: A deep event network for multimedia event detection and evidence recounting", In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2568-2577, 2015. [DOI:10.1109/CVPR.2015.7298872]
19. [19] JA. Benediktsson, JA. Palmason, and JR. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles", IEEE Transactions on Geoscience and Remote Sensing 43, pp. 480-491, 2005. [DOI:10.1109/TGRS.2004.842478]
20. [20] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, "Deep convolutional neural networks for hyperspectral image classification", Journal of Sensors , 2015. [DOI:10.1155/2015/258619]
21. [21] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, "Deep feature extraction and classification of hyperspectral images based on convolutional neural networks", IEEE Transactions on Geoscience and Remote Sensing 54, pp. 6232-6251, 2016. [DOI:10.1109/TGRS.2016.2584107]
22. [22] S. Yu, S. Jia, and C. Xu, "Convolutional neural networks for hyperspectral image classification", Neurocomputing 219,pp. 88-98, 2017, [DOI:10.1016/j.neucom.2016.09.010]
23. [23] E. Aptoula, MC. Ozdemir, and B. Yanikoglu, "Deep learning with attribute profiles for hyperspectral image classification", IEEE Geoscience and Remote Sensing Letters13, pp. 1970-1974, 2016. [DOI:10.1109/LGRS.2016.2619354]
24. [24] B. Kumar, and O. Dikshit, "Texture based hyperspectral image classification", International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 8, 2014. [DOI:10.5194/isprsarchives-XL-8-793-2014]
25. [25] M. Zortea, and A. Plaza, "Spatial preprocessing for endmember extraction", IEEE Transactions on Geoscience and Remote Sensing 47, pp. 2679-2693, 2009. [DOI:10.1109/TGRS.2009.2014945]
26. [26] J. Nagi, F. Ducatelle, GA. Di Caro, D. Cireşan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber, and LM. Gambardella, "Max-pooling convolutional neural networks for vision-based hand gesture recognition", In 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 342-347. IEEE, 2011. [DOI:10.1109/ICSIPA.2011.6144164]
27. [27] F. Mirzapour, and H. Ghassemian, "Using GLCM and Gabor filters for classification of PAN images", In 2013 21st Iranian Conference on Electrical Engineering (Icee), pp. 1-6. IEEE, 2013. [DOI:10.1109/IranianCEE.2013.6599565]
28. [28] F. Mirzapour, and H. Ghassemian, "Improving hyperspectral image classification by combining spectral, texture, and shape features", International Journal of Remote Sensing 36, pp. 1070-1096, 2015. [DOI:10.1080/01431161.2015.1007251]
29. [29] RJ. Ferrari, RM. Rangayyan, JL. Desautels, and AF. Frère, "Analysis of asymmetry in mammograms via directional filtering with Gabor wavelets", IEEE Transactions on Medical Imaging 20, pp. 953-964, 2001. [DOI:10.1109/42.952732]
30. [30] T. Ojala, M. Pietikäinen, and T. Mäenpää, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns", IEEE Transactions on Pattern Analysis & Machine Intelligence 7, pp. 971-987, 2002. [DOI:10.1109/TPAMI.2002.1017623]
31. [31] Z. Zuo, B. Shuai, G. Wang, X. Liu, X. Wang, B. Wang, and Y. Chen, "Learning contextual dependence with convolutional hierarchical recurrent neural networks", IEEE Transactions on Image Processing 25, pp. 2983-2996, 2016. [DOI:10.1109/TIP.2016.2548241]
32. [32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting", The journal of machine learning research 15, pp. 1929-1958, 2014.
33. [33] M. Fauvel, "Spectral and spatial methods for the classification of urban remote sensing data", PhD diss., 2007.
34. [34] X. Liu, Q. Sun, B. Liu, B. Huang, and M. Fu, "Hyperspectral image classification based on convolutional neural network and dimension reduction", In 2017 Chinese Automation Congress (CAC), pp. 1686-1690. IEEE, 2017. [DOI:10.1109/CAC.2017.8243039]
35. [35] BA. Beirami, and M. Mokhtarzade, "SVM classification of hyperspectral images using the combination of spectral bands and Moran's I features" In 2017 10th Iranian Conference on Machine Vision and Image Processing (MVIP), pp. 139-144. IEEE, 2017. [DOI:10.1109/IranianMVIP.2017.8342334]
36. [36] X. Kang, S. Li, and JA. Benediktsson, "Spectral-spatial hyperspectral image classification with edge-preserving filtering", IEEE transactions on geoscience and remote sensing 52, pp. 2666-2677, 2013. [DOI:10.1109/TGRS.2013.2264508]
37. [37] B. Pan, Z. Shi, and X. Xu, "R-VCANet: A new deep-learning-based hyperspectral image classification method", IEEE Journal of selected topics in applied earth observations and remote sensing 10, pp. 1975-1986, 2017. [DOI:10.1109/JSTARS.2017.2655516]
38. [38] X. Kang, C. Li, S.Li, and H. Lin, "Classification of hyperspectral images by Gabor filtering based deep network", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11, pp. 1166-1178, 2017. [DOI:10.1109/JSTARS.2017.2767185]
39. [39] Y. Xu, B. Du, F. Zhang, and L. Zhang, "Hyperspectral image classification via a random patches network", ISPRS journal of photogrammetry and remote sensing 142, pp. 344-357, 2018. [DOI:10.1016/j.isprsjprs.2018.05.014]
40. [40] A. Santara, K. Mani, P. Hatwar, A. Singh, A. Garg, K. Padia, and P. Mitra, "BASS net: Band-adaptive spectral-spatial feature learning neural network for hyperspectral image classification", IEEE Transactions on Geoscience and Remote Sensing, pp.5293-5301,2017. [DOI:10.1109/TGRS.2017.2705073]
41. [41] F.Palsson, J.R.Sveinsson, and M.O.Ulfarsson, "Multispectral and hyperspectral image fusion using a 3-D-convolutional neural network", IEEE Geoscience and Remote Sensing Letters, pp.639-643, (2017). [DOI:10.1109/LGRS.2017.2668299]
42. [42] S.K. Roy, G. Krishna, S.R. Dubey, and B.B. Chaudhuri, "HybridSN: Exploring 3D-2D CNN Feature Hierarchy for Hyperspectral Image Classification", Published In IEEE Geoscience And Remote Sensing Letters, 2019. [DOI:10.1109/LGRS.2019.2918719]
43. [43] F. Mirzapour, and H. Ghassemian, "Moment-based feature extraction from high spatial resolution hyperspectral images", International Journal of Remote Sensing, pp.1349-1361, 2016. [DOI:10.1080/2150704X.2016.1151568]
44. [44] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting", The journal of machine learning research, pp.1929-1958, 2014.
45. [45] S. Ioffe, and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", 2015.
46. [46] M. Thoma, "Analysis and optimization of convolutional neural network architectures", Master Thesis, Department of Computer Science Institute for Anthropomatics and FZI Research Center for Information Technology, 2017.
47. [47] N. Singhal, N. Singhal, and V. Kalaichelvi,"Image classification using bag of visual words model with FAST and FREAK", In 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT) IEEE, 2017. [DOI:10.1109/ICECCT.2017.8117861]
ارسال پیام به نویسنده مسئول


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharifi O, Asghari Beirami B, Mokhtarzade M. Classification of hyperspectral images by fusion of spectral and spatial features in convolutional neural networks. jgit. 2021; 9 (2) :1-27
URL: http://jgit.kntu.ac.ir/article-1-691-fa.html

شریفی عبید، اصغری بیرامی بهنام، مختارزاده مهدی. طبقه بندی تصاویر ابرطیفی با استفاده از ادغام ویژگی های طیفی و مکانی در شبکه های عصبی پیچشی. مهندسی فناوری اطلاعات مکانی. 1400; 9 (2) :27-1

URL: http://jgit.kntu.ac.ir/article-1-691-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 9، شماره 2 - ( 7-1400 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.04 seconds with 29 queries by YEKTAWEB 4353