1. [1] Chang, C.-I., "Endmember Finding and Anomaly Detection", in Hyperspectral Target Detection, in Real-Time Progressive Hyperspectral Image Processing. Chang, C.-I., New York: Springer, 2016, 131-172. 2. [2] Hbirkou, C., Pätzold, S., Mahlein, A.K. and Welp, G., "Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale", Geoderma, 175, 21-28, 2012. 3. [3] Samsonova, V. P., Meshalkina, J. L., Blagoveschensky, Y. N., Yaroslavtsev, A. M., and Stoorvogel, J. J. "The role of positional errors while interpolating soil organic carbon contents using satellite imagery", Precision Agriculture, 19(6), 1085-1099, 2018. 4. [4] Wang, J., Tiyip, T., Jianli, D., Dong, Z. and Wei, L., "Estimation of desert soil organic carbon content based on hyperspectral data preprocessing with fractional differential", Transactions of the Chinese Society of Agricultural Engineering, 32(21), 161-169, 2016. 5. [5] Susič, N., Žibrat, U., Širca, S., Strajnar, P., Razinger, J., Knapič, M., Vončina, A., Urek, G. and Gerič, B. "Discrimination between abiotic and biotic drought stress in tomatoes using hyperspectral imaging", Sensors and actuators B: Chemical, 273, 842-852, 2018. 6. [6] Wang, J., Mao, X., Wang, R., Li, A., Zhao, G., Zhao, J. and Jing, R., "Identification of wheat stress-responding genes and TaPR-1-1 function by screening a cDNA yeast library prepared following abiotic stress", scientific reports, 9, 141, 2019. 7. [7] Wang, F., J. Gao, and Y. Zha, "Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges", ISPRS Journal of Photogrammetry and Remote Sensing,. 136, 73-84, 2018. 8. [8] Lei, J., Li, Y., Zhao, D., Xie, J., Chang, C-I., Wu, L., Li, X., Zhang, J., Li and W., "A Deep Pipelined Implementation of Hyperspectral Target Detection Algorithm on FPGA Using HLS", Remote Sensing, 10(4), 516, 2018. 9. [9] Li, K., Wang, X.R., Guo, B-T., Zhang, W.G., Yuan, H., Wu, X., and Zhao, C., "Accurate deduction of infrared imaging features of subpixel targets based on the conversion of radiation fields of measured area targets", Applied Optics, 57, 9499-9507, 2018. 10. [10] Sabol, D.E., Adams, J.B., and Smith, M.O., "Quantitative subpixel spectral detection of targets in multispectral images", Journal of Geophysical Research: Planets, 97(E2), 2659-2672, 1992. 11. [11] Chang, C.-I., Hyperspectral Target Detection, in Real-Time Progressive Hyperspectral Image Processing. New York: Springer, 2016. 12. [12] Ashton, E.A. and A. Schaum, "Algorithms for the detection of sub-pixel targets in multispectral imagery", Photogrammetric Engineering & Remote Sensing,. 64(7), 723-731, 1998. 13. [13] Settle, J. and N. Drake, "Linear mixing and the estimation of ground cover proportions" International Journal of Remote Sensing,. 14(6), 1159-1177, 1993. 14. [14] Bro, R. and S. De Jong, "A fast non-negativity constrained least squares algorithm", Journal of Chemometrics: A Journal of the Chemometrics Society,. 11(5), 393-401, 1997. https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L [ DOI:10.1002/(SICI)1099-128X(199709/10)11:53.0.CO;2-L] 15. [15] Lawson, C.L. and Hanson, R.J., Solving least squares problems. Philadelphia, Pa. : Society for Industrial and Applied Mathematics, 1995. 16. [16] Heinz, D. C., and Chang, C-I., "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery", IEEE Transactions on Geoscience and Remote Sensing, 39(3), 529-545, 2001. 17. [17] Ghilani, C.D., Adjustment computations: spatial data analysis. John Wiley & Sons, 2017. 18. [18] Somers, B., Delalieux, S., Stuckens, J., Verstraeten W. W. and Coppin, P., "A weighted linear spectral mixture analysis approach to address endmember variability in agricultural production systems", International Journal of Remote Sensing, 30(1), 139-147, 2009. 19. [19] Deng, Y., Wu, C., Zhang, X. and Jia, X., "Examining the effectiveness of weighted spectral mixture analysis (WSMA) in urban environments", International Journal of Remote Sensing, 40(8), 3055-3075, 2018. 20. [20] Teunissen, P.J. and A. Amiri-Simkooei, "Least-squares variance component estimation" Journal of geodesy, 82(2), 65-82, 2008. 21. [21] Cocks, T., Jenssen, R., Stewart, A., Wilson, I. and Shields, T., "The HyMap Airborne Hyperspectral Sensor: The System, Calibration and Performance", proceeding of the 1st EARSeL Workshop on Imaging Spectroscopy (M. Schaepman, D. Schläpfer, and K.I. Itten, Eds.), 6-8 October, Zurich, EARSeL, Paris, 37-42, 1998. 22. [22] Snyder, D., Kerekes, J., Fairweather, I., Crabtree, R., Shive, J. and Hager, S., "Development of a Web-Based Application to Evaluate Target Finding Algorithms", IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, 2008. 23. [23] http://dirsapps.cis.rit.edu/blindtest/. 24. [24] Green, A. A., Berman, M., Switzer, P. and Craig, M. D., "A transformation for ordering multispectral data in terms of image quality with implications for noise removal", IEEE Transactions on Geoscience and Remote Sensing, 26(1), 65-74, 1988. 25. [25] Safdarinezhad, A., Mokhtarzade, M., and Valadan Zoej, M., "Shadow-based hierarchical matching for the automatic registration of airborne LiDAR data and space imagery" Remote Sensing, 8(6) 466, 2016. 26. [26] Safdarinezhad, A. and Valadan Zoej, M.J., "An optimized orbital parameters model for geometric correction of space images" Advances in Space Research, 55(5), 1328-1338, 2015. 27. [27] Safdarinezhad, A., Mokhtarzade, M., and Valadan Zoej, M.J., "An automatic method for precise 3D registration of high resolution satellite images and Airborne LiDAR Data", International Journal of Remote Sensing, 40(24) 9460-9483, 2019.
|