[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 7, Issue 4 (3-2020) ::
jgit 2020, 7(4): 139-156 Back to browse issues page
Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Farzaneh Aghighi , Hossein Aghighi * , Omid Mahdi Ebadati
Shahid Beheshti University
Abstract:   (3033 Views)
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, such as airborne Light Detection and Ranging (LiDAR) system, lead to a huge amount of remotely sensed data which can be employed to produce 2D/3D models. Although much of the previous researches have investigated on the performance improvement of the traditional data analyzing techniques, recently, more recent attention has focused on using probabilistic graphical models. However, less attention has paid to Conditional Random Field (CRF) method for the classification of the LiDAR point cloud dataset. Moreover, most researchers investigating CRF have utilized cameras or LiDAR point cloud; therefore, this paper adopted CRF model to employ both data sources. The methods were evaluated using ISPRS benchmark datasets for Vaihingen dataset on urban classification and 3D building reconstruction. The evaluation of this research shows that the performance of CRF model with an overall accuracy of 89.06% and kappa value of 0.84 is higher than other techniques to classify the employed LiDAR point cloud dataset.
Keywords: LiDAR point cloud, Classification, CRF, Machine learning, Urban features.
Full-Text [PDF 1619 kb]   (1294 Downloads)    
Type of Study: Research | Subject: Aerial Photogrammetry
Received: 2018/12/19 | Accepted: 2019/10/8 | Published: 2020/03/19
Send email to the article author



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aghighi F, Aghighi H, Ebadati O M. Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area. jgit 2020; 7 (4) :139-156
URL: http://jgit.kntu.ac.ir/article-1-767-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 7, Issue 4 (3-2020) Back to browse issues page
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.04 seconds with 36 queries by YEKTAWEB 4660