1. [1] L. Xie, H. Zhang, H. Li, and C. Wang, "A unified framework for crop classification in southern China using fully polarimetric, dual polarimetric, and compact polarimetric SAR data," Int. J. Remote Sens., vol. 36, no. 14, pp. 3798-3818, Jul. 2015. [ DOI:10.1080/01431161.2015.1070319] 2. [2] H. Chen, D. G. Goodenough, and S. R. Cloude, "Mapping forest fire scars with simulated RCM compact-pol data," in 2014 IEEE Geoscience and Remote Sensing Symposium, Jul. 2014, pp. 1572-1575. [ DOI:10.1109/IGARSS.2014.6946740] 3. [3] R. Sabry and P. W. Vachon, "Advanced polarimetric synthetic aperture radar (SAR) and Electro-Optical (EO) data fusion through unified coherent formulation of the scattered em field," Prog. Electromagn. Res., vol. 84, pp. 189-203, 2008. [ DOI:10.2528/PIER08071005] 4. [4] J.-C. Souyris, P. Imbo, R. Fjortoft, Sandra Mingot, and Jong-Sen Lee, "Compact polarimetry based on symmetry properties of geophysical media: the /spl pi//4 mode," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 634-646, Mar. 2005. [ DOI:10.1109/TGRS.2004.842486] 5. [5] A. Aghabalaei, Y. Maghsoudi, and H. Ebadi, "Forest classification using extracted PolSAR features from Compact Polarimetry data," Adv. Sp. Res., vol. 57, no. 9, pp. 1939-1950, 2016. [ DOI:10.1016/j.asr.2016.02.007] 6. [6] M. Jafari, Y. Maghsoudi, and M. J. Valadan Zoej, "A new method for land cover characterization and classification of polarimetric SAR data using polarimetric signatures," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, no. 7, pp. 3595-3607, 2015. [ DOI:10.1109/JSTARS.2014.2387374] 7. [7] A. Masjedi, M. J. Valadan Zoej, and Y. Maghsoudi, "Classification of Polarimetric SAR Images Based on Modeling Contextual Information and Using Texture Features," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 2, pp. 932-943, 2016. [ DOI:10.1109/TGRS.2015.2469691] 8. [8] L. Wang, X. Xu, H. Dong, R. Gui, and F. Pu, "Multi-pixel simultaneous classification of polsar image using convolutional neural networks," Sensors (Switzerland), vol. 18, no. 3, pp. 1-18, 2018. [ DOI:10.3390/s18030769] 9. [9] A. G. Mullissa, C. Persello, and A. Stein, "Polsarnet: A deep fully convolutional network for polarimetric sar image classification," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 12, no. 12, pp. 5300-5309, 2019. [ DOI:10.1109/JSTARS.2019.2956650] 10. [10] B. Hou, X. Guo, W. Hou, S. Wang, X. Zhang, and L. Jiao, "PolSAR Image Classification Based on DBN and Tensor Dimensionality Reduction," in IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Jul. 2018, pp. 8448-8450. [ DOI:10.1109/IGARSS.2018.8517524] 11. [11] L. Zhang, W. Ma, and D. Zhang, "Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 9, pp. 1359-1363, 2016. [ DOI:10.1109/LGRS.2016.2586109] 12. [12] F. Mohammadimanesh, B. Salehi, M. Mahdianpari, B. Brisco, and E. Gill, "Full and simulated compact polarimetry SAR responses to Canadian wetlands: Separability analysis and classification," Remote Sens., vol. 11, no. 5, 2019. [ DOI:10.3390/rs11050516] 13. [13] X. Zhang, J. Zhang, M. Liu, and J. Meng, "Assessment of C-band compact polarimetry SAR for sea ice classification," Acta Oceanol. Sin., vol. 35, no. 5, pp. 79-88, 2016. [ DOI:10.1007/s13131-016-0856-3] 14. [14] Y. Izumi, S. Demirci, M. Z. bin Baharuddin, T. Watanabe, and J. T. S. Sumantyo, "Analysis of dual- and full-circular polarimetric SAR modes for rice phenology monitoring: An experimental investigation through ground-based measurements," Appl. Sci., vol. 7, no. 4, pp. 1-16, 2017. [ DOI:10.3390/app7040368] 15. [15] K. Dasari and A. Lokam, "Exploring the Capability of Compact Polarimetry (Hybrid Pol) C Band RISAT-1 Data for Land Cover Classification," IEEE Access, vol. 6, pp. 57981-57993, 2018. [ DOI:10.1109/ACCESS.2018.2873348] 16. [16] D. Haldar, A. Das, S. Mohan, O. Pal, R. S. Hooda, and M. Chakraborty, "ASSESSMENT OF L-BAND SAR DATA AT DIFFERENT POLARIZATION COMBINATIONS FOR CROP AND OTHER LANDUSE CLASSIFICATION," Prog. Electromagn. Res. B, vol. 36, pp. 303-321, 2012. [ DOI:10.2528/PIERB11071106] 17. [17] K. Fukushima, "Neocognitron: A hierarchical neural network capable of visual pattern recognition," Neural Networks, vol. 1, no. 2, pp. 119-130, Jan. 1988. [ DOI:10.1016/0893-6080(88)90014-7] 18. [18] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, "Convolutional neural networks: an overview and application in radiology," Insights Imaging, vol. 9, no. 4, pp. 611-629, Aug. 2018. [ DOI:10.1007/s13244-018-0639-9] 19. [19] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, "A survey of the recent architectures of deep convolutional neural networks," Artif. Intell. Rev., vol. 53, no. 8, pp. 5455-5516, Dec. 2020. [ DOI:10.1007/s10462-020-09825-6] 20. [20] "Forest Cover Classification Using Compact Polarimetry Data TT -," ISSGE , vol. 5, no. 3. pp. 1-14, 2016. 21. [21] M. E. Nord, T. L. Ainsworth, J. Sen Lee, and N. J. S. Stacy, "Comparison of compact polarimetric synthetic aperture radar modes," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 174-188, 2009. [ DOI:10.1109/TGRS.2008.2000925] 22. [22] T. L. Ainsworth, J. P. Kelly, and J. S. Lee, "Classification comparisons between dual-pol, compact polarimetric and quad-pol SAR imagery," ISPRS J. Photogramm. Remote Sens., vol. 64, no. 5, pp. 464-471, 2009. [ DOI:10.1016/j.isprsjprs.2008.12.008]
|