1. [1] D. Dutta, A. Kundu, N. R. Patel, S. K. Saha, and A. R. Siddiqui, "Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI)," Egypt. J. Remote Sens. Sp. Sci., vol. 18, no. 1, pp. 53-63, 2015, doi: 10.1016/j.ejrs.2015.03.006. [ DOI:10.1016/j.ejrs.2015.03.006] 2. [2] D. P. Roy et al., "Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity," Remote Sens. Environ., vol. 185, pp. 57-70, 2016, doi: 10.1016/j.rse.2015.12.024. [ DOI:10.1016/j.rse.2015.12.024] 3. [3] A. Jamali, M. Mahdianpari, B. Brisco, J. Granger, F. Mohammadimanesh, and B. Salehi, "Wetland Mapping Using Multi-Spectral Satellite Imagery and Deep Convolutional Neural Networks: A Case Study in Newfoundland and Labrador, Canada," Can. J. Remote Sens., vol. 47, no. 2, pp. 243-260, 2021, doi: 10.1080/07038992.2021.1901562. [ DOI:10.1080/07038992.2021.1901562] 4. [4] D. Mejia Ávila, V. C. Soto Barrera, and Z. Martínez Lara, "Spatio-temporal modelling of wetland ecosystems using Landsat time series: case of the Bajo Sinú Wetlands Complex (BSWC)- Córdoba- Colombia," Ann. GIS, vol. 25, no. 3, pp. 231-245, 2019, doi: 10.1080/19475683.2019.1617347. [ DOI:10.1080/19475683.2019.1617347] 5. [5] R. Costanza et al., "Changes in the global value of ecosystem services," Glob. Environ. Chang., vol. 26, no. 1, pp. 152-158, 2014, doi: 10.1016/j.gloenvcha.2014.04.002. [ DOI:10.1016/j.gloenvcha.2014.04.002] 6. [6] S. Sabater et al., "Nitrogen Removal by Riparian Buffers along a European Climatic Gradient : Patterns and Factors of Variation," pp. 20-30, 2003, doi: 10.1007/s10021-002-0183-8. [ DOI:10.1007/s10021-002-0183-8] 7. [7] M. Mahdianpari et al., "A large-scale change monitoring of wetlands using time series Landsat imagery on Google Earth Engine: a case study in Newfoundland," GIScience Remote Sens., vol. 57, no. 8, pp. 1102-1124, 2020, doi: 10.1080/15481603.2020.1846948. [ DOI:10.1080/15481603.2020.1846948] 8. [8] X. Na, S. Zang, C. Wu, Y. Tian, and W. Li, "Hydrological regime monitoring and mapping of the Zhalong wetland through integrating time series Radarsat-2 and landsat imagery," Remote Sens., vol. 10, no. 5, 2018, doi: 10.3390/rs10050702. [ DOI:10.3390/rs10050702] 9. [9] S. T. S. and M.Hasanlou, "Novel Wetland and Water Body Change Detection Using Multi Temporal Hyperspectral Imagery," Int. Water Conf. 2016, Springer, 2016. 10. [10] K. Wal-, "Ecosystem services : Classification for valuation," vol. 1, no. 2007, pp. 8-10, 2008. 11. [11] K. Katsuki, K. Seto, A. Tsujimoto, H. Takata, and T. Sonoda, "Estuarine , Coastal and Shelf Science Relationship between regional climate change and primary ecosystem characteristics in a lagoon undergoing anthropogenic eutrophication , Lake," Estuar. Coast. Shelf Sci., vol. 222, no. April, pp. 205-213, 2019, doi: 10.1016/j.ecss.2019.04.016. [ DOI:10.1016/j.ecss.2019.04.016] 12. [12] S. Munishi and G. Jewitt, "Degradation of Kilombero Valley Ramsar wetlands in Tanzania," Phys. Chem. Earth, vol. 112, no. February, pp. 216-227, 2019, doi: 10.1016/j.pce.2019.03.008. [ DOI:10.1016/j.pce.2019.03.008] 13. [13] F. Song, F. Su, D. Zhu, L. Li, H. Li, and D. Sun, "Evaluation and driving factors of sustainable development of the wetland ecosystem in Northeast China: An emergy approach," J. Clean. Prod., vol. 248, p. 119236, 2020, doi: 10.1016/j.jclepro.2019.119236. [ DOI:10.1016/j.jclepro.2019.119236] 14. [14] E. Ruiz, "Management of Natura 2000 habitats * Mediterranean temporary ponds 3170," Ecosystems, p. 20, 2008, [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:MANAGEMENT+of+Natura+2000+habita+ts+*+Mediterranean+temporary+ponds#0. 15. [15] C. O. Koning, "Vegetation Patterns Resulting From Spatial and Temporal Variability in Hydrology , Soils , and Trampling in an I," Wetlands, vol. 25, no. 2, pp. 239-251, 2005. [ DOI:10.1672/1] 16. [16] H. Jin, C. Huang, M. W. Lang, I. Y. Yeo, and S. V. Stehman, "Monitoring of wetland inundation dynamics in the Delmarva Peninsula using Landsat time-series imagery from 1985 to 2011," Remote Sens. Environ., vol. 190, pp. 26-41, 2017, doi: 10.1016/j.rse.2016.12.001. [ DOI:10.1016/j.rse.2016.12.001] 17. [17] R. I. A. Stewart et al., Mesocosm Experiments as a Tool for Ecological Climate-Change Research, 1st ed., vol. 48. Elsevier Ltd., 2013. 18. [18] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, "Google Earth Engine: Planetary-scale geospatial analysis for everyone," Remote Sens. Environ., vol. 202, pp. 18-27, 2017, doi: 10.1016/j.rse.2017.06.031. [ DOI:10.1016/j.rse.2017.06.031] 19. [19] M. Zare, H. R. Pourghasemi, M. Vafakhah, and B. Pradhan, "Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms," Arab. J. Geosci., vol. 6, no. 8, pp. 2873-2888, 2013, doi: 10.1007/s12517-012-0610-x. [ DOI:10.1007/s12517-012-0610-x] 20. [20] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, vol. 2. 2005. 21. [21] I. A. Basheer and M. Hajmeer, "Artificial neural networks: Fundamentals, computing, design, and application," J. Microbiol. Methods, vol. 43, no. 1, pp. 3-31, 2000, doi: 10.1016/S0167-7012(00)00201-3. [ DOI:10.1016/S0167-7012(00)00201-3] 22. [22] B. Pradhan and S. Lee, "Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling," Environ. Model. Softw., vol. 25, no. 6, pp. 747-759, 2010, doi: 10.1016/j.envsoft.2009.10.016. [ DOI:10.1016/j.envsoft.2009.10.016] 23. [23] W. Jiang et al., "Multilayer perceptron neural network for surface water extraction in landsat 8 OLI satellite images," Remote Sens., vol. 10, no. 5, pp. 1-22, 2018, doi: 10.3390/rs10050755. [ DOI:10.3390/rs10050755] 24. [24] J. Y. Liu et al., "Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements," Ann. Geophys., vol. 22, no. 5, pp. 1585-1593, 2004, doi: 10.5194/angeo-22-1585-2004. [ DOI:10.5194/angeo-22-1585-2004] 25. [25] S. Pulinets, "Ionospheric precursors of earthquakes: Recent advances in theory and practical applications," Terr. Atmos. Ocean. Sci., vol. 15, no. 3, pp. 413-435, 2004, doi: 10.3319/TAO.2004.15.3.413(EP). [ DOI:10.3319/TAO.2004.15.3.413(EP)] 26. [26] H. Yuan, H. Dai, W. Wu, J. Xie, J. Shen, and X. Wei, "A fuzzy logic PI control with feedforward compensation for hydrogen pressure in vehicular fuel cell system," Int. J. Hydrogen Energy, vol. 46, no. 7, pp. 5714-5728, 2021, doi: 10.1016/j.ijhydene.2020.11.089. [ DOI:10.1016/j.ijhydene.2020.11.089] 27. [27] J. O. Oladipo, A. S. Akinwumiju, O. S. Aboyeji, and A. A. Adelodun, "Comparison between fuzzy logic and water quality index methods: A case of water quality assessment in Ikare community, Southwestern Nigeria," Environ. Challenges, vol. 3, no. November 2020, p. 100038, 2021, doi: 10.1016/j.envc.2021.100038. [ DOI:10.1016/j.envc.2021.100038] 28. [28] H. Gharibi et al., "Development of a dairy cattle drinking water quality index (DCWQI) based on fuzzy inference systems," Ecol. Indic., vol. 20, pp. 228-237, 2012, doi: 10.1016/j.ecolind.2012.02.015. [ DOI:10.1016/j.ecolind.2012.02.015]
|