1. [1] N. Sneeuw, Physical Geodesy. 2004. 2. [2] O. D. Kellogg, "The Potential," in Foundations of Potential Theory, O. D. Kellogg, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1929, pp. 48-84. [ DOI:10.1007/978-3-642-90850-7_3] 3. [3] R. S. Nerem, S. M. Klosko, and N. K. Pavlis, "Applications of Global Gravity Field Models in Geodesy and Oceanography," in Global Gravity Field and Its Temporal Variations, Berlin, Heidelberg, 1996, pp. 1-11: Springer Berlin Heidelberg. [ DOI:10.1007/978-3-642-61140-7_1] 4. [4] F. Tavares. (2018). Ice Confirmed at the Moon's Poles. Available: https://www.nasa.gov/feature/ames/ice-confirmed-at-the-moon-s-poles. 5. [5] M. T. Zuber, D. E. Smith, D. H. Lehman, T. L. Hoffman, S. W. Asmar, and M. M. Watkins, "Gravity Recovery and Interior Laboratory (GRAIL): Mapping the Lunar Interior from Crust to Core," Space Science Reviews, vol. 178, no. 1, pp. 3-24, 2013/09/01 2013. [ DOI:10.1007/s11214-012-9952-7] 6. [6] G. V. Haines, "Spherical cap harmonic analysis," Journal of Geophysical Research: Solid Earth, 1029/10/JB090iB03p02583 vol. 90, no. B3, pp. 2583-2591, 1985/02/28 1985a. 10.1029/JB090iB03p02583 [ ] 7. [7] G. V. Haines, "Spherical cap harmonic analysis of geomagnetic secular variation over Canada 1960-1983," Journal of Geophysical Research: Solid Earth, 1029/10/JB090iB14p12563 vol. 90, no. B14, pp. 12563-12574, 1985/12/10 1985b. 10.1029/JB090iB14p12563 [ ] 8. [8] L. Jiancheng, C. Dingbo, and N. Jinsheng, "Spherical cap harmonic expansion for local gravity field representation," Manuscripta geodaetica, vol. 20, no. 4, pp. 265-265, 1995. 9. [9] A. De Santis, "Conventional spherical harmonic analysis for regional modelling of the geomagnetic field," Geophysical Research Letters, 1029/10/92GL01068 vol. 19, no. 10, pp. 1065-1067, 1992/05/22 1992. 10.1029/92GL01068 [ ] 10. [10] S.-C. Han, "Improved regional gravity fields on the Moon from Lunar Prospector tracking data by means of localized spherical harmonic functions," Journal of Geophysical Research: Planets, 1029/10/2008JE003166 vol. 113, no. E11, 2008/11/01 2008. 10.1029/2008JE003166 [ ] 11. [11] S. Goossens, Y. Ishihara, K. Matsumoto, and S. Sasaki, "Local lunar gravity field analysis over the South Pole-Aitken basin from SELENE farside tracking data," Journal of Geophysical Research: Planets, 1029/10/2011JE003831 vol. 117, no. E2, 2012/02/01 2012. 10.1029/2011JE003831 [ ] 12. [12] G. Younis, "Regional Gravity Field Modeling with Adjusted Spherical Cap Harmonics in an Integrated Approach," 2013. 13. [13] M. Raoofian Naeeni and M. Feizi, "Regional Gravity Field Modelling using Adjausted Spherical Cap Harmonic Analysis," (in eng), Journal of Geomatics Science and Technology, Research vol. 7, no. 1, pp. 115-124, 2017. 14. [14] m. Feizi and M. R. Naeeni, "Local gravity field modeling using basis functions of harmonic nature and vector airborne Gravimetry, Case Study: Gravity field modeling over north-east of Tanzania region," (in Fa), Journal of the Earth and Space Physics, vol. 44, no. 3, pp. 523-534, 2018. 15. [15] É. L. Akim, "Determination of the Gravitational Field of the Moon from the Motion of the Artificial Lunar Satellite "Luna-10"," Soviet Physics Doklady, vol. 11, p. 855, April 01, 1967 1967. 16. [16] A. S. Konopliv et al., "The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission," Journal of Geophysical Research: Planets, 1002/10/jgre.20097 vol. 118, no. 7, pp. 1415-1434, 2013/07/01 2013. 10.1002/jgre.20097 [ ] 17. [17] M. Erwan. Lunar Gravity Field: GRGM1200A. Available: https://pgda.gsfc.nasa.gov/products/50 18. [18] B. D. Tapley, S. Bettadpur, M. Watkins, and C. Reigber, "The gravity recovery and climate experiment: Mission overview and early results," Geophysical Research Letters, vol. 31, no. 9, 2004. [ DOI:10.1029/2004GL019920] 19. [19] W. M. Klipstein et al., "The Lunar Gravity Ranging System for the Gravity Recovery and Interior Laboratory (GRAIL) Mission," Space Science Reviews, vol. 178, no. 1, pp. 57-76, 2013/09/01 2013. [ DOI:10.1007/s11214-013-9973-x] 20. [20] R. Rummel, "Determination of short-wavelength components of the gravity field from satellite-to satellite tracking or satellite gradiometry," manuscripta geodaetica, vol. 4, no. 2, pp. 107-148, 1979. 21. [21] S. R. Ghaffari-Razin and B. Voosoghi, "Regional ionosphere modeling using spherical cap harmonics and empirical orthogonal functions over Iran," Acta Geodaetica et Geophysica, vol. 52, 01/29 2016. [ DOI:10.1007/s40328-016-0162-8] 22. [22] M. Feizi, M. Raoofian-Naeeni, and S.-C. Han, "Comparison of spherical cap and rectangular harmonic analysis of airborne vector gravity data for high-resolution (5/1 km) local geopotential field models over Tanzania," Geophysical Journal International, vol. 227, no. 3, pp. 1465-1479, 2021. [ DOI:10.1093/gji/ggab280] 23. [23] M. Šprlák, S.-C. Han, and W. Featherstone, "Integral inversion of GRAIL inter-satellite gravitational accelerations for regional recovery of the lunar gravitational field," Advances in Space Research, vol. 65, no. 1, pp. 630-649, 2020. [ DOI:10.1016/j.asr.2019.10.015] 24. [24] M. Šprlák and S.-C. Han, "On the use of spherical harmonic series inside the minimum Brillouin sphere: Theoretical review and evaluation by GRAIL and LOLA satellite data," Earth-Science Reviews, vol. 222, p. 103739, 2021. [ DOI:10.1016/j.earscirev.2021.103739] 25. [25] S. Goossens, Á. Fernández Mora, E. Heijkoop, and T. J. Sabaka, "Patched local lunar gravity solutions using GRAIL data," Earth and Space Science, vol. 8, no. 11, p. e2021EA001695, 2021. [ DOI:10.1029/2021EA001695] 26. [26] M. Šprlák, S.-C. Han, and W. Featherstone, "Forward modelling of global gravity fields with 3D density structures and an application to the high-resolution (~ 2 km) gravity fields of the Moon," Journal of Geodesy, vol. 92, no. 8, pp. 847-862, 2018. [ DOI:10.1007/s00190-017-1098-7] 27. [27] M. Šprlák, S.-C. Han, and W. Featherstone, "Spheroidal forward modelling of the gravitational fields of 1 Ceres and the Moon," Icarus, vol. 335, p. 113412, 2020. [ DOI:10.1016/j.icarus.2019.113412] 28. [28] K. Ghobadi Far et al., "A transfer function between line of sight gravity difference and GRACE intersatellite ranging data and an application to hydrological surface mass variation," Journal of Geophysical Research: Solid Earth, vol. 123, no. 10, pp. 9186-9201, 2018. [ DOI:10.1029/2018JB016088] 29. [29] C. Hirt, W. Featherstone, M. Kuhn, and S. Claessens, "Comments on "A high resolution Mars surface gravity grid"(Górski et al., 2018, Planetary and Space Science 160, 84-106)," Planetary and Space Science, vol. 176, p. 104685, 2019. [ DOI:10.1016/j.pss.2019.06.009] 30. [30] M. Šprlák, S. Han, and W. Featherstone, "Is the spheroidal approximation of the Moon important for high-resolution forward gravitational field modelling?." 31. [31] M. Šprlák, "Crustal density and global gravitational field models on the Moon from GRAIL and LOLA satellite data.". 32. [32] Hansen, P. C. (1998). Rank-deficient and discrete ill-posed problems : numerical aspects of linear inversion. [ DOI:10.1137/1.9780898719697]
|