[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 308
نرخ پذیرش: 63
نرخ رد: 37
میانگین داوری: 209 روز
میانگین انتشار: 344 روز
..
:: دوره 11، شماره 1 - ( 3-1402 ) ::
جلد 11 شماره 1 صفحات 57-37 برگشت به فهرست نسخه ها
فیلتر سری‌های زمانی تداخل‌سنجی راداری با استفاده از آنالیز ماتریس نویز کمترین مربعات تک‌متغیره
محسن زینل پور ، حمید مهرابی* ، علیرضا امیری سیمکویی
دانشگاه اصفهان
چکیده:   (1008 مشاهده)
زندگی بشر همواره متأثر از حوادث طبیعی مختلف مانند زلزله، فوران آتشفشان، فرونشست و غیره می‌باشد. یکی از ابزارهای مناسب جهت بررسی و تحلیل این حوادث، تداخل‌سنجی راداری با روزنه مصنوعی است. این تکنیک به عنوان یک روش ژئودتیک، با استفاده از اختلاف فاز میان تصاویر راداری، قادر به شناسایی جابه‌جایی پوسته‌ زمین و آنالیز تغییر شکل می‌باشد. از مهم‌ترین مزایای آن می‌توان به سرعت بالای دسترسی به اطلاعات و قدرت تفکیک زمانی و مکانی بالا اشاره نمود. همانند سایر روش‌های ژئودتیک، دقت بالا در این تکنیک به مدل‌سازی آشفتگی‌ها و نویزهای موجود در مشاهدات وابسته است. علیرغم پیشرفت‌ در دهه‌های اخیر، این آشفتگی‌ها کمتر مورد توجه قرار گرفته‌اند. منطقه مطالعاتی در این پژوهش، شمال غرب جزیره هاوایی می‌باشد. در این مطالعه فیلتر و کاهش آشفتگی‌های موجود در سری‌های زمانی بر مبنای مناسب‌ترین مدل تابعی و مدل آماری انجام می‌شود. مدل تابعی و مدل آماری مناسب با استفاده از آزمون بیشینه درست‌نمایی (MLE) تشخیص داده می‌شود. مدل‌های تابعی بررسی‌شده در این مطالعه شامل ترند، مولفه‌های متناوب و پرش‌های موجود در سری‌های زمانی می‌باشند. مدل‌های آماری نیز شامل نویز سفید، فلیکر و رندوم‌واک هستند که مولفه‌های آنها با استفاده از روش آنالیز نویز کمترین مربعات تک‌متغیره تشخیص داده می‌شوند. سری‌های زمانی با استفاده از مناسب‌ترین مدل تابعی و آماری بازتولید می‌شوند. در این مطالعه مناسب‌ترین مدل برای تمامی پیکسل‌ها، ترند خطی با حضور مولفه‌های متناوب، پرش‌ها و نویز سفید می‌باشد. پس از فیلتر سری‌های زمانی بر اساس مدل‌های تابعی و آماری مناسب، نتایج این روش و فیلترهای بالاگذر و پایین‌گذر با یکدیگر مقایسه می‌شوند. پس از اعمال روش آنالیز نویز کمترین مربعات تک‌متغیره، به طور میانگین صحت نتایج به میزان 43% بهبود یافت درحالی که بهبود حاصل از اعمال فیلترهای بالاگذر و پایین‌گذر به طور میانگین 28% می‌باشد.
 
واژه‌های کلیدی: سری‌های زمانی تداخل‌سنجی راداری، آنالیز نویز کمترین مربعات تک‌متغیره، فیلترهای بالاگذر و پایین‌گذر
متن کامل [PDF 1510 kb]   (337 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژئودزی (عمومی)
دریافت: 1401/10/8 | پذیرش: 1402/2/18 | انتشار الکترونیک پیش از انتشار نهایی: 1402/3/31 | انتشار: 1402/4/18
فهرست منابع
1. [1] Y. Cao, Z. Li, J. Wei, J. Hu, M. Duan, and G. Feng, "Stochastic modeling for time series InSAR: with emphasis on atmospheric effects," Journal of Geodesy, vol. 92, no. 2, pp. 185-204, 2018. [DOI:10.1007/s00190-017-1055-5]
2. [2] P. Agram and M. Simons, "A noise model for InSAR time series," Journal of Geophysical Research: Solid Earth, vol. 120, no. 4, pp. 2752-2771, 2015. [DOI:10.1002/2014JB011271]
3. [3] D. Raucoules and M. De Michele, "Assessing ionospheric influence on L-band SAR data: Implications on coseismic displacement measurements of the 2008 Sichuan earthquake," IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 2, pp. 286-290, 2009. [DOI:10.1109/LGRS.2009.2033317]
4. [4] W. D. Barnhart and R. B. Lohman, "Characterizing and estimating noise in InSAR and InSAR time series with MODIS," Geochemistry, Geophysics, Geosystems, vol. 14, no. 10, pp. 4121-4132, 2013. [DOI:10.1002/ggge.20258]
5. [5] W. Gong, F. J. Meyer, S. Liu, and R. F. Hanssen, "Temporal filtering of InSAR data using statistical parameters from NWP models," IEEE Transactions on geoscience and remote sensing, vol. 53, no. 7, pp. 4033-4044, 2015. [DOI:10.1109/TGRS.2015.2389143]
6. [6] Z. Yunjun, H. Fattahi, and F. Amelung, "Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction," Computers & Geosciences, vol. 133, p. 104331, 2019. [DOI:10.1016/j.cageo.2019.104331]
7. [7] R. M. Goldstein, H. A. Zebker, and C. L. J. R. s. Werner, "Satellite radar interferometry: Two-dimensional phase unwrapping," vol. 23, no. 4, pp. 713-720, 1988. [DOI:10.1029/RS023i004p00713]
8. [8] J. Biggs, T. Wright, Z. Lu, and B. J. G. J. I. Parsons, "Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska," vol. 170, no. 3, pp. 1165-1179, 2007. [DOI:10.1111/j.1365-246X.2007.03415.x]
9. [9] E. Hussain, A. Hooper, T. J. Wright, R. J. Walters, and D. P. J. J. o. G. R. S. E. Bekaert, "Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements," vol. 121, no. 12, pp. 9000-9019, 2016. [DOI:10.1002/2016JB013108]
10. [10] M. Dalaison and R. Jolivet, "A Kalman filter time series analysis method for InSAR," Journal of Geophysical Research: Solid Earth, vol. 125, no. 7, p. e2019JB019150, 2020. [DOI:10.1029/2019JB019150]
11. [11] Y. Cao, Z. Li, and F. J. J. o. G. Amelung, "Mapping ground displacement by a multiple phase difference-based InSAR approach: with stochastic model estimation and turbulent troposphere mitigation," vol. 93, no. 9, pp. 1313-1333, 2019. [DOI:10.1007/s00190-019-01248-8]
12. [12] R. F. Hanssen, "Stochastic modeling of time series radar interferometry," in IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 2004, vol. 4: IEEE, pp. 2607-2610.
13. [13] S. Samsonov, "Topographic correction for ALOS PALSAR interferometry," IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 7, pp. 3020-3027, 2010. [DOI:10.1109/TGRS.2010.2043739]
14. [14] R. F. Hanssen, Radar interferometry: data interpretation and error analysis. Springer Science & Business Media, 2001. [DOI:10.1007/0-306-47633-9]
15. [15] A. Ferretti, C. Prati, and F. Rocca, "Analysis of permanent scatterers in SAR interferometry," in IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120), 2000, vol. 2: IEEE, pp. 761-763.
16. [16] P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti, "A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms," IEEE Transactions on geoscience and remote sensing, vol. 40, no. 11, pp. 2375-2383, 2002. [DOI:10.1109/TGRS.2002.803792]
17. [17] A. Ferretti, C. Prati, and F. Rocca, "Permanent scatterers in SAR interferometry," IEEE Transactions on geoscience and remote sensing, vol. 39, no. 1, pp. 8-20, 2001. [DOI:10.1109/36.898661]
18. [18] A. R. Amiri‐Simkooei, C. C. Tiberius, and P. J. Teunissen, "Assessment of noise in GNSS coordinate time series: methodology and results," Journal of Geophysical Research: Solid Earth, vol. 112, no. B7, 2007. [DOI:10.1029/2006JB004913]
19. [19] A. Amiri-Simkooei, "Noise in multivariate GNSS position time-series," Journal of Geodesy, vol. 83, no. 2, pp. 175-187, 2009. [DOI:10.1007/s00190-008-0251-8]
20. [20] A. J. J. o. G. R. S. E. Amiri‐Simkooei, "On the nature of GNSS draconitic year periodic pattern in multivariate position time series," vol. 118, no. 5, pp. 2500-2511, 2013. [DOI:10.1002/jgrb.50199]
21. [21] B. Tahmasebi, A. R. Amiri-Simkooei, M. Dehghani, and M. Momeni, "Evaluation of Noise in Deformation Time Series Extracted by Small Baseline Interferometry," (in eng), Journal of Geomatics Science and Technology, Research vol. 4, no. 4, pp. 83-92, 2015.(persian)
22. [22] Z. Lu and D. Dzurisin, "InSAR imaging of Aleutian volcanoes," in InSAR imaging of Aleutian volcanoes: Springer, 2014, pp. 87-345 [DOI:10.1007/978-3-642-00348-6_6]
23. [23] S. Li, W. Xu, and Z. Li, "Review of the SBAS InSAR Time-series algorithms, applications, and challenges," Geodesy and Geodynamics, 2021. [DOI:10.1016/j.geog.2021.09.007]
24. [24] Y. Fialko, M. Simons, and D. Agnew, "The complete (3‐D) surface displacement field in the epicentral area of the 1999 Mw7. 1 Hector Mine earthquake, California, from space geodetic observations," Geophysical research letters, vol. 28, no. 16, pp. 3063-3066, 2001. [DOI:10.1029/2001GL013174]
25. [25] J. O. Ogundare, Understanding least squares estimation and geomatics data analysis. John Wiley & Sons, 2018. [DOI:10.1002/9781119501459]
26. [26] J.-P. Montillet and M. S. Bos, Geodetic time series analysis in earth sciences. Springer, 2019. [DOI:10.1007/978-3-030-21718-1]
27. [27] J.-P. Montillet, S. Williams, A. Koulali, and S. McClusky, "Estimation of offsets in GNSS time-series and application to the detection of earthquake deformation in the far-field," Geophysical Journal International, vol. 200, no. 2, pp. 1207- 1221, 2015. [DOI:10.1093/gji/ggu473]
28. [28] A .Amiri-Simkooei, M. Hosseini-Asl, J. Asgari, and F. Zangeneh-Nejad, "Offset detection in GNSS position time series using multivariate analysis," GNSS solutions, vol. 23, no. 1, pp. 1-12, 2019. [DOI:10.1007/s10291-018-0805-z]
29. [29] Dong, Danan, et al. "Anatomy of apparent seasonal variations from GPS‐derived site position time series." Journal of Geophysical Research: Solid Earth 107.B4 (2002): ETG-9. [DOI:10.1029/2001JB000573]
30. [30] S. J. J. o. G. Williams, "The effect of coloured noise on the uncertainties of rates estimated from geodetic time series," vol. 76, no. 9-10, pp. 483-494, 2003. [DOI:10.1007/s00190-002-0283-4]
31. [31] A. Amiri-Simkooei, "Least-squares variance component estimation: theory and GNSS applications," 2007. [DOI:10.54419/fz6c1c]
32. [32] USGS."Kilauea Volcano." USGS. https:// www. usgs.gov/ volcanoes/kilauea (accessed 8/20/2022, 2022).
33. [33] Google Earth."Hawwaii Islands." Google Earth. https://earth.google.com (accessed 8/20/2022, 2022).
34. [34] Y. Morishita, M. Lazecky, T. J. Wright, J. R. Weiss, J. R. Elliott, and A. Hooper, "LiCSBAS: An open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor," Remote Sensing, vol. 12, no. 3, p. 424, 2020. [DOI:10.3390/rs12030424]
35. [35] USGS." earthquakes." USGS. https://earthquake.usgs.gov/earthquakes/map (accessed 7/11/2022, 2022).
36. [36] Tomás, Roberto, et al. "Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide." Landslides 13 (2016): 437-450. [DOI:10.1007/s10346-015-0589-y]
37. [37] Reinosch, Eike, et al. "InSAR time series analysis of seasonal surface displacement dynamics on the Tibetan Plateau." The Cryosphere 14.5 (2020): 1633-1650. [DOI:10.5194/tc-14-1633-2020]
38. [38] G. Blewitt, W. C. Hammond, and C. Kreemer, "Harnessing the GNSS data explosion for interdisciplinary science," Eos, vol. 99, no. 10.1029 ,p. 485, 2018. [DOI:10.1029/2018EO104623]
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zaynalpoor M, Mehrabi H, Amiri A. Filtering Radar Interferometry Time Series with Univariate Least Squares Noise Matrix Analysis. jgit 2023; 11 (1) :37-57
URL: http://jgit.kntu.ac.ir/article-1-905-fa.html

زینل پور محسن، مهرابی حمید، امیری سیمکویی علیرضا. فیلتر سری‌های زمانی تداخل‌سنجی راداری با استفاده از آنالیز ماتریس نویز کمترین مربعات تک‌متغیره. مهندسی فناوری اطلاعات مکانی. 1402; 11 (1) :37-57

URL: http://jgit.kntu.ac.ir/article-1-905-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 11، شماره 1 - ( 3-1402 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 38 queries by YEKTAWEB 4657