[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 308
نرخ پذیرش: 63
نرخ رد: 37
میانگین داوری: 209 روز
میانگین انتشار: 344 روز
..
:: دوره 11، شماره 4 - ( 12-1402 ) ::
جلد 11 شماره 4 صفحات 81-55 برگشت به فهرست نسخه ها
یک روش مبتنی بر شبکه عصبی جهت اندازه‌گیری بهنگام غلظت آلاینده‌های گازی شهر تهران با استفاده از تصاویر سنجنده مادیس
مینا صالح ، رضا شاه حسینی* ، زهرا بهرامیان ، سارا خانبانی
دانشکده مهندسی نقشه‌برداری و اطلاعات مکانی، دانشکدگان فنی، دانشگاه تهران
چکیده:   (870 مشاهده)
امروزه آلاینده‌های گازی به عنوان چالشی مهم در شهرهای بزرگ مطرح می‌‌باشند. با توجه به این که این آلاینده‌ها باعث بروز اثرات منفی بر سلامت انسان و تخریب محیط زیست می‌شود، روش‌های متعددی به منظور پیش‌بینی غلظت آلاینده‌های گازی از جمله مونواکسیدکربن (CO)، دی‌اکسیدنیتروژن (NO2) و دی‌اکسیدگوگرد (SO2)، توسط پژوهشگران ارایه شده است. هدف از پژوهش حاضر محاسبه‌ بهنگام غلظت آلاینده‌های گازی با استفاده از داده‌های سنجنده‌ مادیس شامل دمای سطح زمین به صورت شبانه و روزانه، عمق نوری آئروسل، شاخص پوشش گیاهی و داده‌های ایستگاه‌های زمینی پایش غلظت آلاینده‌ها با استفاده از شبکه عصبی پرسپترون چند لایه می‌باشد. با توجه به نتایج، شبکه عصبی پرسپترون با 8 نورون بهترین عملکرد را نشان داده است. این 8 نورون شامل 4 نورون در لایه ورودی، 3 نورون در لایه پنهان و یک نورون در لایه خروجی می باشد. 80 درصد از داده‌ها به عنوان داده آموزشی و 20 درصد داده‌ها به عنوان داده آزمایشی و 15 درصد از داده‌های آموزشی نیز به منظور صحت‌سنجی شبکه در نظر گرفته شده است. با استفاده از داده‌های آموزشی و آزمایشی مذکور، پارامترهای تعداد دوره و نرخ یادگیری تحلیل حساسیت شده و مناسب­ ترین پارامترها انتخاب شده است. به ­منظور ارزیابی مقایسه ­ای نیز از روش رگرسیون جنگل تصادفی استفاده شده است. با توجه به نتایج، شبکه عصبی پرسپترون چند لایه نسبت به رگرسیون جنگل تصادفی عملکرد بهتری را نشان داد. در گام آخر نیز به تجزیه و تحلیل کیفی نقشه‌ غلظت آلاینده‌ها و ارتباط آن‌ها با کاربری زمین و معابر موجود حول هر یک از ایستگاه‌های زمینی پایش کنترل کیفیت هوا پرداخته شده است. داده‌های شهر تهران به صورت سری زمانی 6 ساله از سال 1393 تا 1399 مورد استفاده قرار گرفت. ارزیابی دقت روش پیشنهادی با استفاده از داده‌های آزمایشی، دقت 86 درصدی در اندازه‌گیری آلاینده مونواکسیدکربن (CO) و دی‌اکسیدنیتروژن (NO2) و دقت 96 درصدی را در اندازه ­گیری آلاینده دی‌اکسیدگوگرد (SO2) نشان داد.
واژه‌های کلیدی: آلودگی هوا، شبکه‌ی عصبی پرسپترون، آلاینده‌های گازی، سیستم اطلاعات مکانی، سنجنده‌ی مادیس.
متن کامل [PDF 3047 kb]   (231 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1402/5/1 | پذیرش: 1402/10/3 | انتشار الکترونیک پیش از انتشار نهایی: 1402/11/29 | انتشار: 1402/12/14
فهرست منابع
1. [1] N. Sajadian, "Prediction of air pollution caused by urban transportation in Tehran metropolis using LUR integration with GIS model and artificial network", Geographic Information Scientific-Research Quarterly, Vol. 24 (95), pp.107-120, 1394.
2. [2] M. Mirzaie, "Modeling the concentration of air pollutants in Tehran using neural network and LUR", Sharif University, 2019.
3. [3] M. "Abbod, et al. Application of artificial intelligence to the management of urological cancer", The Journal of urology, vol. 4 (178), pp. 1150-1156, 2007.DOI: [DOI:10.1016/j.juro.2007.05.122]
4. [4] B. Ainslie, et al. "A source area model incorporating simplified atmospheric dispersion and advection at fine scale for population air pollutant exposure assessment", Atmospheric Environment, vol. 42 (10), pp. 2394-2404, 2008 DOI: [DOI:10.1016/j.atmosenv.2007.12.021]
5. [5] S. Al-Alola, I. Alkadi, H. Alogayellail, S. Mohamed, and I. Ismail, "Air quality estimation using remote sensing and GIS-spatial technologies along Al-Shamal train pathway, Al-Qurayyat City in Saudi Arabia, Environmental and Sustainability Indicators", Spiringer, 100184, 2022. [DOI:10.1016/j.indic.2022.100184]
6. [6] H. Amini, S. Taghavi Shahri, k. Naddafi, R. Nabizadeh, and m. Yunesian, "Correlation of air pollutants with land use and traffic measures in Tehran, Iran: A preliminary statistical analysis for land use regression modeling", Journal of Advances in Environmental Health Research, 1, 1, pp. 1-8, 2013.
7. [7] L. Bai, J. Wang, X. Ma, and H. Lu, "Air Pollution Forecasts: An Overview", International Journal of Environmental Research and Public Health, 15, 4, pp. 1-44, 2018.
8. [8] H. Bagheri, "Using deep ensemble forest for high-resolution mapping of PM2.5 from MODIS MAIAC AOD in Tehran, Iran", National Library of Medicine, DOI: 10.1007/s10661-023-10951-1, 2023.
9. [9] A. Bekkar, B. Hssina, and S. D. Douzi, "Air pollution prediction in smart city", deep learning approach. Journal of big Data, 8, 161, pp. 1-21, 2021.
10. [10] P. Bromandi, F. Karaca, A. Nikfal, A. Jahanbakhshi, M. Tamjidi, , & J. Kim, "Impact of COVID-19 event on the air quality in Iran", Aerosol and Air Quality Research, 20, pp. 1793-1804, 2020.
11. [11] D. Ciresan, et al. "Flexible, high performance convolutional neural networks for image classification", in Twenty-Second International Joint Conference on Artificial Intelligence, 2011.
12. [12] M. Delavar, A. Gholami, G. shiran, Y. Rashidi, G. Nakhaeizadeh, F. Kurt, and S. Hatefi Afshar, "A Novel Method for Improving Air Pollution Prediction Based on Mashine Leaning Approaches: A Case Study Applied to the Capital City of Tehran", International Journal of Geo-Information, 8, 2, pp. 1-20, 2019.
13. [13] R. Espinosa, J.Palma, F. Jiménez, J. Kamińska, G. Sciavicco, and E. Lucena-Sánchez, "A time series forecasting based multi-criteria methodology for air quality prediction", Applied Soft Computing, 113, 107850, 2021. [DOI:10.1016/j.asoc.2021.107850]
14. [14] T. Filippini, K. Rothman, A. Goffi, F. Ferarri, G. Maffeis, N. Orsini, and M. Vinceti, "Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy", Science of the Total Environment, 739, 140278, 2020.
15. [15] M. Gardner, and S. Dorling, "Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences", Atmospheric environment, vol. 32(14-15), pp. 2627-2636, 1998. DOI. 1352-2310(97)00447-0
16. [16] I. Y. B. Goodfellow, and A. Courville. "Deep learning", springer MIT press, 2016.
17. [17] K. S. Harishkumar, and Y. K. Ibrahim Gad, "Using Machine Learning Regression Models", Procedia Computer Science, 171, pp. 2057-2066, 2020.
18. [18] Ian. Heaton, y. Goodfellow, and Courville. aaron. "Deep learning", Springer, 2018. DOI:
19. [19] P. Hedelt, D. Efremenko, D. Loyola, R. Spurr, and L. Clarisse, "Sulfur dioxide layer height retrieval from Sentinel-5 Precursor/TROPOMI using FP_ILM", Atmospheric Measurement Techniques. Vol. 12(10), pp. 5503-5517, 2019.
20. [20] G. Hoek, et al. "Estimation of long-term average exposure to outdoor air pollution for a cohort study on mortality", Journal of Exposure Science and Environmental Epidemiology, vol. 11(6), pp. 459-469, 2001. DOI: [DOI:10.1038/sj.jea.7500189]
21. [21] X. Huang, Chunjiang, S. Tianyu, Y. Shiji,. L. Le, Y. Baoxian, and Wu. C. Wenjun, "Large scale air pollution prediction with deep convolutional networks", Science China Information Sciences, 64, 192107, 2021. [DOI:10.1007/s11432-020-2951-1]
22. [22] I. Ialongo, H. Virta, H. Eskes, J. Hovila, and J. Douros, "Comparison of TROPOMI/Sentinel-5 Precursor NO2 product with ground-based observations in Helsinki and first societal applications", In EGU General Assembly Conference Abstracts, 4-8 May, pp.9963, 2020.
23. [23] T. Igbal, "An investigation of Spatial Patterns of Urban Air Pollution and Source Recognition through GIS and Remote Sensing in Lahore", 2011.
24. [24] Iran Road Management Center [IRMC], 2022, Online; accessed 25, Nov, 2022. Available from: https://141. ir.
25. [25] G. James, et al. "An introduction to statistical learning", Springer, Vol. 112, 2013.
26. [26] A. Just, et al. "Using high-resolution satellite aerosol optical depth to estimate daily PM2. 5 geographical distribution in Mexico City", Environmental science & technology, vol. 49(14), pp. 8576-8584, 2015. DOI: [DOI:10.1021/acs.est.5b00859]
27. [27] B. Karlik, and A.V. Olgac, "Performance analysis of various activation functions in generalized MLP architectures of neural networks", International Journal of Artificial Intelligence and Expert Systems, vol. 1(4), pp. 111-122, 2011.
28. [28] A. Kizrak, "Towards data science, Comparison of Activation Functions for Deep Neural Networks", Online accessed 9 jun, 2020.
29. [29] M. E. Koukouli, I. Skoulidou, A. Karavias, I. Parcharidis, D. Balis, A. Manders, and J. Van Geffen, "Sudden changes in nitrogen dioxide emissions over Greece due to lockdown after the outbreak of COVID-19", Atmospheric Chemistry and Physics, 21, pp. 1759-1774, 2021.
30. [30] R. Laumbach, and H. Kipen, "Respiratory health effects of air pollution: update on biomass smoke and traffic pollution", Journal of allergy and clinical immunology, vol. 129(1), pp. 3-11, 2012. DOI: https://dio.org/10.1016/j. jaci.2011.11.021.
31. [31] Li. W. Thomas, R. El-Askary, H. Piechota, T. Struppa, D. and K. Ghaffar, "Investigating the significance of aerosols in determining the coronavirus fatality rate among three European Countries", Earth Systems and Environment, 4, pp. 513-522, 2020.
32. [32] A. Lorente, K. Boersma, H. Eskes, J. Veefkind, J. Van Geffen, M. De Zeeuw, M. Krol, "Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI", Scientific reports, vol. 9(1), pp.1-10, 2019.
33. [33] A. L. A. Maas, and A. Y. Ng "Rectifier nonlinearities improve neural network acoustic models. in Proc", Icml, 2013.
34. [34] M. A. R. Mohri & A. Talwalkar, "Foundations of machine learning", MIT press, 2018.
35. [35] P. Muthukumar, E. Cocom, K. Nagrecha, D. Comer, I. Burga, J. Taub, M. Pourhomayoun, "Predicting PM2.5 atmospheric air pollution using deep learning with meteorological data and ground-based observations and remote-sensing satellite big data", Air Quality, Atmosphere and Health, 15, 7, pp. 1221-1234, 2022.
36. [36] V. Nair, and G.E. Hinton, "Rectified linear units improve restricted boltzmann machines", in Proceedings of the 27th international conference on machine learning (ICML-10), 2010.
37. [37] M. Nielsen, "Neural networks and deep learning", Vol. 2018. 2015: Determination press San Francisco, CA, USA, 2015.
38. [38] s. Oji, and H. Adamu, "Air Pollution Exposure Mapping by GIS in Kano Metropolitan Area", Research Paper, 7, 1, pp. 101-112, 2021.
39. [39] H. Omrani, B. Omrani, B. Parmentier, and Helbich, "Spatio-temporal data on the air pollutant nitrogen dioxide derived from Sentinel satellite for France", Data in brief, 28, 105089, 2020.
40. [40] S. Quesada-Ruiz, J. Attié, W. Lahoz, R. Abida, P. Ricaud, L. Amraoui, A. Segers, "Benefit of ozone observations from Sentinel-5P and future Sentinel-4 missions on tropospheric composition", Atmospheric Measurement Techniques, vol. 13(1), pp. 131-152, 2020.
41. [41] A. Rahimi, "Short-term prediction of NO2 and NOX concentrations using multilayer perceptron, neural network a case study of Tabriz, Iran", Ecological Processes, 6, 4, pp. 1-9, 2017.
42. [42] D. Ren Liu, Y.-K. Hsu, and H. J. Yu Chen, "Air pollution prediction based on factory-aware attentional LSTM neural network", Computing, 103, 1, pp.75-98, 2021.
43. [43] B. Ripley, "Pattern recognition and neural networks", Cambridge university press, 2007.
44. [44] D. Rumelhart, G.E. Hinton, and R.J. Williams, "Learning internal representations by error propagation", California Univ San Diego La Jolla Inst for Cognitive Science, 1985.
45. [45] S. Russell, and P. Norvig, "Artificial intelligence: a modern approach (global 3rd edition)", Essex: Pearson, 2016.
46. [46] O. Schneising, M. Buchwitz, M. Reuter, H. Bovensmann, J. Burrows, T. Borsdorff, F. Hase, "A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 precursor", Atmospheric Measurement Techniques, 12, pp. 6771-6802, 2019.
47. [47] J. Seinfeld, and S. Pandis, "Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; JohnWiley & Sons", New York, NY, USA, 2012.
48. [48] L. Shikwambana, P. Mhangara, and N. Mbatha, "Trend analysis and first time observations of sulphur dioxide and nitrogen dioxide in South Africa using TROPOMI/Sentinel-5 P data", International Journal of Applied Earth Observation and Geoinformation, 91, 102130, 2020.
49. [49] A. Soleimany, and R. S. Grubliauskas, "Application of satellite data and GIS services for studying air pollutants in Lithuania (case study: Kaunas city)", Air Quality, Atmosphere & Health, 14, 3, pp. 411-429, 2020.
50. [50] W. Sun, L. Zhu, I. De Smedt, B. Bai, D. Pu, Y. Chen, X. Wang, "Global significant changes in formaldehyde (HCHO) columns observed from space at the early stage of the COVID‐19 pandemic", Geophysical Research Letters, 48,2e20GL091265, 2021.
51. [51] A. Tella, and I. Balogun, Faye, "Spatiotemporal modelling of the influence of climatic variables and seasonal variation on PM10 in Malaysia using multivariate regression (MVR) and GIS, Geomatics", Natural Hazards and Risk, 12, 1, pp. 443-468, 2021.
52. [52] N. Theys, P. Hedelt, I. De Smedt, C. Lerot, H. Yu, J. Vlietinck, C. Carlito, "Global monitoring of volcanic SO 2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor", Scientific reports, vol. 9(1), pp. 1-10, 2019.
53. [53] D. Thi Kim Phuong, M. Cong Nhut, and N. Duc Tri, "Air Pollution Assessment using RS and GIS in HO Chi Minh city, Vietnam: A case study of period 2015-2019 for SO2 and NO2", IOP Conference Series: Earth and Environmental Science, 652, 2020.
54. [54] S. Tiwari, A. Srivastava, A. Singh, and S. Singh, "Identification of aerosol types over Indo-Gangetic Basin: implications to optical properties and associated radiative forcing", Environmental Science and Pollution Research, vol. 22(16), pp. 12246-12260, 2015.
55. [55] C. Vigouroux, B. Langerock, C. Bauer Aquino, Z. Cheng, M. DeMaziere, I. De Smedt, R. Kivi, "TROPOMI-Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations", Atmospheric Measurement Techniques, vol. 13(7), pp. 3751-3767, 2020.
56. [56] M. Vîrghileanu, I. Săvulescu, B. Mihai, C. Nistor, and R. Dobre, "Nitrogen Dioxide (NO2) Pollution Monitoring with Sentinel-5P Satellite Imagery over Europe during the Coronavirus Pandemic Outbreak", Remote Sensing, vol. 12(21), 3575, 2020.
57. [57] L. Wang, M. Li, S. Yu, X. Chen, Z. Li, Y. Zhang, W. Liu, "Unexpected rise of ozone in urban and rural areas, and sulfur dioxide in rural areas during the coronavirus city lockdown in Hangzhou, China: implications for air quality", Environmental Chemistry Letters, 18, pp. 1713-1723, 2020.
58. [58] K. Wark, and C. Warner, "Air Pollution: Its Origin and Control; Harper and Row. New York, NY, USA", 1981.
59. [59] C.F. Wark, and K. Warner, "Air Pollution: Its Origin and Control: Harper and Row: New York, USA", 1981.
60. [60] F. Zhao, C. Lic, Z. Cai, X. Liu, J. Bak, and Y. Kim, "Ozone profile retrievals from TROPOMI: Implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China", Science of The Total Environment, 764, 142886, 2021. [DOI:10.1016/j.scitotenv.2020.142886]
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saleh M, Shah-Hosseini R, Bahramian Z, Khanbani S. A Neural Network-Based Approach for Real-Time Measurement of the Concentration of Gaseous Pollutants in Tehran Using MODIS. jgit 2024; 11 (4) :55-81
URL: http://jgit.kntu.ac.ir/article-1-928-fa.html

صالح مینا، شاه حسینی رضا، بهرامیان زهرا، خانبانی سارا. یک روش مبتنی بر شبکه عصبی جهت اندازه‌گیری بهنگام غلظت آلاینده‌های گازی شهر تهران با استفاده از تصاویر سنجنده مادیس. مهندسی فناوری اطلاعات مکانی. 1402; 11 (4) :55-81

URL: http://jgit.kntu.ac.ir/article-1-928-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 11، شماره 4 - ( 12-1402 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 38 queries by YEKTAWEB 4657