:: دوره 8، شماره 2 - ( 6-1399 ) ::
جلد 8 شماره 2 صفحات 113-93 برگشت به فهرست نسخه ها
توسعه یک الگوریتم پنجره مجزا برای بازیابی دمای سطح زمین با استفاده از تصاویر ماهواره‌ای سنتینل-3
مسعود حیدری، مهدی آخوندزاده هنزائی*
دانشگاه تهران
چکیده:   (1045 مشاهده)
دمای سطح زمین، شاخص مهمی در مطالعه مدل­های تعادل انرژی در سطح زمین و فعل و انفعالات بین زمین و اتمسفر در مقیاس منطقه­ای و جهانی است. در چند دهه اخیر الگوریتم­های مختلف و متنوعی برای تعیین دمای سطح زمین با استفاده از تصاویر ماهواره­ای مختلف ارائه گردیده است. در این پژوهش یک روش پنجره­مجزای جدید برای بازیابی دمای سطح زمین با استفاده از تصاویر سنجنده رادیومتر دمای سطح زمین و دریا (SLSTR)، ماهواره سنتینل-A3، ارائه شده است. مزیت روش پیشنهادی دخیل کردن بخار آب موجود در اتمسفر در الگوریتم پنجره­مجزا می­باشد که نقش مهمی را در بازیابی دمای سطح زمین ایفا می­کند. دمای سطح زمین با روش پیشنهادی و با سه الگوریتم پنجره­مجزای موجود دیگر بازیابی شد؛ سپس نتایج حاصل از روش پیشنهادی و سه الگوریتم پنجره­مجزای موجود با محصولات دمایی سنجنده­های استر، مادیس و سنتینل-3 مقایسه­گردید. مقدار ریشه میانگین مربعات خطا (RMSE) روش پیشنهادی برای منطقه مورد مطالعه شرق تهران در مقایسه با محصولات دمایی استر، مادیس و سنتینل-3 به ترتیب 49/3، 22/1 و 26/1 کلوین به دست آمد که مقدار کمتری نسبت به RMSE به دست آمده از سایر الگوریتم­های پنجره­مجزا را دارد. همچنین روش پیشنهادی و سه الگوریتم پنجره­مجزای دیگر برای منطقه­های شمال­غرب اصفهان و کرمانشاه پیاده­سازی شد. برای منطقه مورد مطالعه کرمانشاه نتایجی به مراتب بهتر از دو منطقه دیگر و سایر روش­ها مشاهده­گردید به طوری که RMSE روش پیشنهادی 05/1 کلوین محاسبه­گردید، در حالی که مقدار RMSE سایر روش­ها 19/1، 28/1و 56/1 کلوین به دست آمد.
واژه‌های کلیدی: دمای سطح زمین، الگوریتم پنجره مجزا، ماهواره سنتینل-3، رادیومتر دمای سطح زمین و دریا (SLSTR).
متن کامل [PDF 1975 kb]   (581 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1398/9/6 | پذیرش: 1399/5/14 | انتشار: 1399/6/31
فهرست منابع
1. [1] Z.-L. Li et al., "Satellite-derived land surface temperature: Current status and perspectives," Remote sensing of environment, vol. 131, pp. 14-37, 2013. [DOI:10.1016/j.rse.2012.12.008]
2. [2] M. C. Anderson, R. G. Allen, A. Morse, and W. P. Kustas, "Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources," Remote Sensing of Environment, vol. 122, pp. 50-65, 2012. [DOI:10.1016/j.rse.2011.08.025]
3. [3] L. S. Bernstein, X. Jin, B. Gregor, and S. M. Adler-Golden, "Quick atmospheric correction code: algorithm description and recent upgrades," Optical engineering, vol. 51, no. 11, p. 111719, 2012. [DOI:10.1117/1.OE.51.11.111719]
4. [4] C. Quintano, A. Fernández-Manso, L. Calvo, E. Marcos, and L. Valbuena, "Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems," International Journal of Applied Earth Observation and Geoinformation, vol. 36, pp. 1-12, 2015. [DOI:10.1016/j.jag.2014.10.015]
5. [5] G. B. Senay et al., "Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach," JAWRA Journal of the American Water Resources Association, vol. 49, no. 3, pp. 577-591, 2013. [DOI:10.1111/jawr.12057]
6. [6] L. Wang, T. Koike, K. Yang, and P. J.-F. Yeh, "Assessment of a distributed biosphere hydrological model against streamflow and MODIS land surface temperature in the upper Tone River Basin," Journal of Hydrology, vol. 377, no. 1-2, pp. 21-34, 2009. [DOI:10.1016/j.jhydrol.2009.08.005]
7. [7] J. Yang, M. S. Wong, M. Menenti, and J. Nichol, "Study of the geometry effect on land surface temperature retrieval in urban environment," ISPRS journal of photogrammetry and remote sensing, vol. 109, pp. 77-87, 2015. [DOI:10.1016/j.isprsjprs.2015.09.001]
8. [8] Q. Weng, P. Fu, and F. Gao, "Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data," Remote sensing of environment, vol. 145, pp. 55-67, 2014. [DOI:10.1016/j.rse.2014.02.003]
9. [9] Z. Qin, A. Karnieli, and P. Berliner, "A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region," International journal of remote sensing, vol. 22, no. 18, pp. 3719-3746, 2001. [DOI:10.1080/01431160010006971]
10. [10] X. Yu, X. Guo, and Z. Wu, "Land surface temperature retrieval from Landsat 8 TIRS-Comparison between radiative transfer equation-based method, split window algorithm and single channel method," Remote Sensing, vol. 6, no. 10, pp. 9829-9852, 2014. [DOI:10.3390/rs6109829]
11. [11] M. Wu, H. Li, W. Huang, Z. Niu, and C. Wang, "Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring," Environmental Science: Processes & Impacts, vol. 17, no. 8, pp. 1396-1404, 2015. [DOI:10.1039/C5EM00254K]
12. [12] B. Y. Yıldız, M. Şahin, O. Şenkal, V. Peştimalci, and K. Tepecik, "Determination of land surface temperature using precipitable water based Split-Window and Artificial Neural Network in Turkey," Advances in Space Research, vol. 54, no. 8, pp. 1544-1551, 2014. [DOI:10.1016/j.asr.2014.06.011]
13. [13] J. C. Jiménez-Muñoz, J. A. Sobrino, D. Skoković, C. Mattar, and J. Cristóbal, "Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data," IEEE Geoscience and remote sensing letters, vol. 11, no. 10, pp. 1840-1843, 2014. [DOI:10.1109/LGRS.2014.2312032]
14. [14] J. Sobrino et al., "Land surface temperature retrieval from Sentinel 2 and 3 Missions," in Proceedings of the Sentinel-3 OLCI/SLSTR and MERIS/(A) ATSR Workshop, Frascati, Italy, 2012, pp. 15-19.
15. [15] J. A. Sobrino et al., "A Prototype Algorithm for Land Surface Temperature Retrieval from Sentinel-3 Mission," in Sentinel-3 for Science Workshop, 2015, vol. 734.
16. [16] J. Sobrino et al., "Synergistic use of MERIS and AATSR as a proxy for estimating Land Surface Temperature from Sentinel-3 data," Remote Sensing of Environment, vol. 179, pp. 149-161, 2016. [DOI:10.1016/j.rse.2016.03.035]
17. [17] A. Ruescas, O. Danne, N. Fomferra, and C. Brockmann, "The Land Surface Temperature Synergistic Processor in BEAM: A Prototype towards Sentinel-3," Data, vol. 1, no. 3, p. 18, 2016. [DOI:10.3390/data1030018]
18. [18] J. C. Jimenez et al., "Sentinel 2 and 3 for Temperature Monitoring Over the Amazon," in IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018: IEEE, pp. 5925-5928.
19. [19] Y. Zheng et al., "Land Surface Temperature Retrieval from Sentinel-3A Sea and Land Surface Temperature Radiometer, Using a Split-Window Algorithm," Remote Sensing, vol. 11, no. 6, p. 650, 2019. [DOI:10.3390/rs11060650]
20. [20] C. Donlon et al., "The global monitoring for environment and security (GMES) sentinel-3 mission," Remote Sensing of Environment, vol. 120, pp. 37-57, 2012. [DOI:10.1016/j.rse.2011.07.024]
21. [21] J. Nieke and C. Mavrocordatos, "Sentinel-3a: commissioning phase results of its optical payload," in International Conference on Space Optics-ICSO 2016, 2017, vol. 10562: International Society for Optics and Photonics, p. 105620C. [DOI:10.1117/12.2296174]
22. [22] R. A. Frey et al., "Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5," Journal of Atmospheric and Oceanic Technology, vol. 25, no. 7, pp. 1057-1072, 2008. [DOI:10.1175/2008JTECHA1052.1]
23. [23] C. Du, H. Ren, Q. Qin, J. Meng, and S. Zhao, "A practical split-window algorithm for estimating land surface temperature from Landsat 8 data," Remote Sensing, vol. 7, no. 1, pp. 647-665, 2015. [DOI:10.3390/rs70100647]
24. [24] J. A. Sobrino, Z.-L. Li, and M. P. Stoll, "Impact of the atmospheric transmittance and total water vapor content in the algorithms for estimating satellite sea surface temperatures," IEEE Transactions on Geoscience and Remote Sensing, vol. 31, no. 5, pp. 946-952, 1993. [DOI:10.1109/36.263765]
25. [25] Z. Wan and J. Dozier, "A generalized split-window algorithm for retrieving land-surface temperature from space," IEEE Transactions on geoscience and remote sensing, vol. 34, no. 4, pp. 892-905, 1996. [DOI:10.1109/36.508406]
26. [26] Z. Wan, "New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product," Remote sensing of Environment, vol. 140, pp. 36-45, 2014. [DOI:10.1016/j.rse.2013.08.027]
27. [27] T. Schmugge, A. French, J. C. Ritchie, A. Rango, and H. Pelgrum, "Temperature and emissivity separation from multispectral thermal infrared observations," Remote Sensing of Environment, vol. 79, no. 2-3, pp. 189-198, 2002. [DOI:10.1016/S0034-4257(01)00272-3]
28. [28] Z.-L. Li and F. Becker, "Feasibility of land surface temperature and emissivity determination from AVHRR data," Remote sensing of Environment, vol. 43, no. 1, pp. 67-85, 1993. [DOI:10.1016/0034-4257(93)90065-6]
29. [29] W. Miller and E. Millis, "ESTIMATING EVAPORATION FROM UTAH'S GREAT SALT LAKE USING THERMAL INFRARED SATELLITE IMAGERY 1," JAWRA Journal of the American Water Resources Association, vol. 25, no. 3, pp. 541-550, 1989. [DOI:10.1111/j.1752-1688.1989.tb03090.x]
30. [30] S.-S. Peng et al., "Afforestation in China cools local land surface temperature," Proceedings of the National Academy of Sciences, vol. 111, no. 8, pp. 2915-2919, 2014. [DOI:10.1073/pnas.1315126111]
31. [31] F. Petitcolin and E. Vermote, "Land surface reflectance, emissivity and temperature from MODIS middle and thermal infrared data," Remote Sensing of Environment, vol. 83, no. 1-2, pp. 112-134, 2002. [DOI:10.1016/S0034-4257(02)00094-9]
32. [32] A. Kassa, "Drought risk monitoring for Sudan using NDVI," Master's thesis, University College London, 1999.
33. [33] I. Pôças, M. Cunha, L. S. Pereira, and R. G. Allen, "Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands," International Journal of Applied Earth Observation and Geoinformation, vol. 21, pp. 159-172, 2013. [DOI:10.1016/j.jag.2012.08.017]
34. [34] B. Johnson, R. Tateishi, and T. Kobayashi, "Remote sensing of fractional green vegetation cover using spatially-interpolated endmembers," Remote Sensing, vol. 4, no. 9, pp. 2619-2634, 2012. [DOI:10.3390/rs4092619]
35. [35] J. Jiménez-Muñoz, J. Sobrino, A. Plaza, L. Guanter, J. Moreno, and P. Martínez, "Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area," Sensors, vol. 9, no. 2, pp. 768-793, 2009. [DOI:10.3390/s90200768]
36. [36] D. W. Bolgrien, N. G. Granin, and L. Levin, "Surface Temperature Dynamics ofLake Baikal Observed from AVHRR lmages," Photogrammetric Engineering & Remote Sensing, vol. 61, no. 2, 1995.
37. [37] W. C. Snyder, Z. Wan, Y. Zhang, and Y.-Z. Feng, "Classification-based emissivity for land surface temperature measurement from space," International Journal of Remote Sensing, vol. 19, no. 14, pp. 2753-2774, 1998. [DOI:10.1080/014311698214497]



XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 8، شماره 2 - ( 6-1399 ) برگشت به فهرست نسخه ها