:: دوره 10، شماره 2 - ( 8-1401 ) ::
جلد 10 شماره 2 صفحات 18-1 برگشت به فهرست نسخه ها
مطالعه اثرات سونامی بر پارامترهای یونوسفری با استفاده از ‌سیستم تعیین موقعیت جهانی
زهرا فرودی ، محمد مهدی علیزاده الیزئی*
دانشگاه صنعتی خواجه نصیر الدین طوسی
چکیده:   (2190 مشاهده)
جابه­ جایی سریع کف اقیانوس در هنگام زلزله ­های بزرگ اقیانوسی منجر به انتشار امواج سونامی در سطح دریا و امواج جاذبه (Gravity Waves) در اتمسفر می ­گردد. امواج جاذبه نوسانات شناوری هستند که به صورت افقی و عمودی منتشر می­ شوند و انتشار آن­ ها تحت تأثیر نیروی جاذبه زمین است. امواج جاذبه پس از گذر از لایه تروپسفر وارد لایه یونوسفر می­ شوند که علاوه بر انتقال انرژی به یونوسفر، تغییرات قابل ملاحظه ­ای را در پارامترهای یونوسفری ایجاد می­ کنند، از این رو تأثیر قابل توجّهی بر انتشار امواج رادیویی گذرنده از این محیط پاشنده دارند. در این مطالعه، از اندازه­ گیری­ های دو فرکانسه سیستم تعیین موقعیت جهانی ((GPS و یونوسند (Ionosonde) برای تعیین مدّت زمان و میزان اثر اغتشاشات یونوسفری در پاسخ به سونامی ناشی از زلزله 2011 توکیو استفاده شده است. فرکانس بحرانی لایه F2 (fof2) نیز اغتشاشات واضحی را نشان می ­دهد که با مشاهداتGPS  سازگار می­ باشد. علاوه ­بر­ این، امواج جاذبه و امواج سونامی دارای خصوصیات انتشار مشابهی هستند، بنابراین می ­توان از امواج جاذبه برای هشدار سونامی استفاده کرد. جهت تحقیق درباره تغییرات مکانی چگالی الکترونی یونوسفر از پروفیل­ های چگالی الکترونی یونوسفری ماهواره­ های FORMOSAT-3/COSMIC  برای دو بازه مرجع و کنترل استفاده شده است. نتایج نشان می ­دهد که چگالی الکترونی یونوسفر تا ارتفاع 272 کیلومتری به طور پیوسته کاهش یافته که کمترین مقدار آن el/cm3 105×2.2 بوده است و افزایش آن از ارتفاع 272 الی 750 کیلومتری ادامه داشته که بیشترین مقدار آن برابر el/cm3  105× 3.92 بوده است.
واژه‌های کلیدی: اغتشاشات یونوسفری، امواج جاذبه، تعامل تروپسفر و یونوسفر، سونامی
متن کامل [PDF 1712 kb]   (442 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژئودزی (عمومی)
دریافت: 1399/9/23 | پذیرش: 1399/11/25 | انتشار الکترونیک پیش از انتشار نهایی: 1400/10/11 | انتشار: 1401/8/10
فهرست منابع
1. [1] J. Böhm, D. Salstein, M.M. Alizadeh, D.D. Wijaya, "Geodetic and Atmospheric Background", in Atmospheric Effects in Space Geodesy. J. Böhm, H. Schuh, Eds., Berlin: Springer, 2013, pp. 1-34. [DOI:10.1007/978-3-642-36932-2_1]
2. [2] J. Laštovička, "Forcing of the ionosphere by waves from below", Journal of Atmospheric and Solar- Terrestrial Physics, 68, pp.479-497, 2006. [DOI:10.1016/j.jastp.2005.01.018]
3. [3] W.H. Hooke, "Ionospheric irregularities produced by internal atmospheric gravity waves", Journal of Atmospheric and Terrestrial Physics, 30, 1968, pp.795-823. [DOI:10.1016/S0021-9169(68)80033-9]
4. [4] G. G. Bowman, "A review of some recent work on mid-latitude spread-F occurrence as detected by ionosondes", Journal of geomagnetism and geoelectricity, 42, 1990, pp. 109-138. [DOI:10.5636/jgg.42.109]
5. [5] S.L. Shalimov, I.A. Nesterov, "On the GPS-based ionospheric perturbation after the Tohoku earthquake of March 11, 2011", Physics of the Solid Earth, 53,pp. 262-273, 2017. [DOI:10.1134/S1069351317020112]
6. [6] S. Lejeune, G. Wautelet, R Warnant," Ionospheric effects on relative positioning within a dense GPS network", GPS Solutions, 16, pp. 105-116, 2012. [DOI:10.1007/s10291-011-0212-1]
7. [7] W.R. Peltier, C.O. Hines, "On the possible detection of tsunamis by a monitoring of the ionosphere", Journal of Geophysical Research, 81,pp. 1995-2000, 1977. [DOI:10.1029/JC081i012p01995]
8. [8] J. Artru, V. Ducic, H. Kanamori, P. Lognonné, M. Murakami,"Ionospheric detection of gravity waves induced by tsunamis", Geophysical Journal, 160, pp. 840-848, 2005. [DOI:10.1111/j.1365-246X.2005.02552.x]
9. [9] G. Occhipinti, P. Lognonné, E.A. Kherani, H. Hébert," Three-dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami", Geophysical Research Letters, 33, pp. 1-5, 2006. [DOI:10.1029/2006GL026865]
10. [10] S.L. Vadas, H.I. Liu," Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves", Journal of Geophysical Research: Space Physics, 114, pp. 744-770, 2009. [DOI:10.1029/2009JA014108]
11. [11] I. Azeem, S.L. Vadas, G. Crowley, J.J. Makela," Traveling ionospheric disturbances over the United States induced by gravity waves from the 2011 Tohoku tsunami and comparison with gravity wave dissipative theory", Journal of Geophysical Research: Space Physics, 122, pp. 3430-3447, 2017. [DOI:10.1002/2016JA023659]
12. [12] H. Yang, E. M. Moreno, M. Hernández-Pajares, "ADDTID: An Alternative Tool for Studying Earthquake /Tsunami Signatures in the Ionosphere. Case of the 2011 Tohoku Earthquake", Remote Sensing, 11, pp. 1-23, 2019. [DOI:10.3390/rs11161894]
13. [13] Y. Rahmani, M.M Alizadeh, H. Schuh, J. Wickert, L.C. Tsai,"Probing vertical coupling effects of thunderstorms on lower ionosphere using GNSS data", Advances in Space Research. 66, pp. 1967-1976, 2020. [DOI:10.1016/j.asr.2020.07.018]
14. [14] N.P. Perevalova, A.B. Ishin," Effects of tropical cyclones in the ionosphere from data of sounding by GPS signals", Atmospheric and Oceanic Physics, 47, pp. 1072-1083, 2011. [DOI:10.1134/S000143381109012X]
15. [15] B. Zolesi, L. R. Cander,''The General Structure of the Ionosphere", in Ionospheric Prediction and Forecasting, Berlin: Springer, 2014, pp. 11-48. [DOI:10.1007/978-3-642-38430-1_2]
16. [16] S. Schaer," Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System ", PhD, Institut für Geod€asie und Photogrammetrie, Eidg. Technische Hochschule Zürich, 1999.
17. [17] M. Li, Y. Yuan, N. Wang, T. Liu, Y. Chen,'' Estimation and analysis of the short-term variations of multi-GNSS receiver differential code biases using global ionosphere maps", Journal of Geodesy, 92, pp. 889-903, 2018. [DOI:10.1007/s00190-017-1101-3]
18. [18] M. Hernández-Pajares, J.M. Juan, J. Sanz," Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis", Journal of Geophysical Research: Space Physics. 111, pp. 1-13, 2006. [DOI:10.1029/2005JA011474]
19. [19] L. Tang, X. Zhang,"A multi-step multi-order numerical difference method for traveling ionospheric disturbances detection", Lecture Notes in Electrical Engineering, 2, pp. 331-340, 2014. [DOI:10.1007/978-3-642-54743-0_27]
20. [20] D.A. Galvan, A. Komjathy, M.P. Hickey, J. Snively, Y. Tony Song, "Ionospheric signatures of Tohoku-Oki tsunami of March 11, 2011: Model comparisons near the epicenter", Radio Science, 47, pp.1-12, 2012. [DOI:10.1029/2012RS005023]
21. [21] W. Keller, Wavelets in Geodesy and Geodynamics, Berlin, De Gruyter,2004. [DOI:10.1515/9783110198188]
22. [22] S.L. Vadas, E. Becker, '' Numerical Modeling of the Excitation, Propagation, and Dissipation of Primary and Secondary Gravity Waves during Wintertime at McMurdo Station in the Antarctic '', Journal of Geophysical Research: Atmospheres, 123, pp. 9326-9369, 2018. [DOI:10.1029/2017JD027974]
23. [23] H. B. Milburn, A.I. Nakamura, F.I. González, "Deep-ocean Assessment and Reporting of Tsunamis (DART)", presented at the In Proceedings of the Oceans 96 MTS/IEEE Conference, Lauderdale, 1996.
24. [24] D. Green, "Transitioning NOAA Moored Buoy Systems from Research to Operations", In Proceedings of OCEANS'06 MTS/IEEE Conference, Boston, 2006. [DOI:10.1109/OCEANS.2006.307068]
25. [25] Y. H. Chu, K. H., Wu, C. L., Su, "A new aspect of ionospheric E region electron density morphology", Journal of Geophysical Research, 114, A12314, 2009. [DOI:10.1029/2008JA014022]
26. [26] K. H. Wu, C. L. Su, Y. H. Chu, "Improvement of GPS radio occultation retrieval error of E region electron density: COSMIC measurement and IRI model simulation", JGR Space Physics, 120, pp. 2299-2315, 2015. [DOI:10.1002/2014JA020622]



XML   English Abstract   Print



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 10، شماره 2 - ( 8-1401 ) برگشت به فهرست نسخه ها