1. [1] S. Alipour, M. Motgah, M. Sharifi, and T. R. Walter, "InSAR time series investigation of land subsidence due to groundwater overexploitation in Tehran, Iran," in 2008 Second Workshop on Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas, 2008, pp. 1-5: IEEE. [ DOI:10.1109/USEREST.2008.4740370] 2. [2] Z. Zhou, "The applications of InSAR time series analysis for monitoring long-term surface change in peatlands," University of Glasgow, 2013. 3. [3] A. H.-M. Ng, L. Ge, X. Li, and K. Zhang, "Monitoring ground deformation in Beijing, China with persistent scatterer SAR interferometry," Journal of Geodesy, vol. 86, pp. 375-392, 2012. [ DOI:10.1007/s00190-011-0525-4] 4. [4] Z. Yang, Z. Li, J. Zhu, H. Yi, J. Hu, and G. Feng, "Deriving dynamic subsidence of coal mining areas using InSAR and logistic model," Remote Sensing, vol. 9, no. 2, p. 125, 2017. [ DOI:10.3390/rs9020125] 5. [5] S. Shimada, "Comparison of the coordinates solutions between the absolute and the relative phase center variation models in the dense regional GPS network in Japan," in Geodesy for Planet Earth: Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 August 31-4 September 2009, 2012, pp. 651-656: Springer. [ DOI:10.1007/978-3-642-20338-1_80] 6. [6] D. Gómez et al., "Co-seismic deformation of the 2010 Maule, Chile earthquake: validating a least squares collocation interpolation," GeoActa, vol. 40, no. 1, pp. 25-35, 2015. 7. [7] Z. Deng, Y. Ke, H. Gong, X. Li, and Z. Li, "Land subsidence prediction in Beijing based on PS-InSAR technique and improved Grey-Markov model," GIScience & Remote Sensing, vol. 54, no. 6, pp. 797-818, 2017. [ DOI:10.1080/15481603.2017.1331511] 8. [8] |M. Goli, "Comparison of least squares collocation and Poisson's integral ethods in downward continuation of airborne gravity data", Journal of Earth and Space Physics,48(1), 63-73, 2022, in persian. 9. [9] N. Darbeheshti and W. Featherstone, "Non-stationary covariance function modelling in 2D least-squares collocation," Journal of Geodesy, vol. 83, no. 6, pp. 495-508, 2009. [ DOI:10.1007/s00190-008-0267-0] 10. [10] M. Reguzzoni, F. Sansó, and G. Venuti, "The theory of general kriging, with applications to the determination of a local geoid," Geophysical journal international, vol. 162, no. 2, pp. 303-314, 2005. [ DOI:10.1111/j.1365-246X.2005.02662.x] 11. [11] M. Abdelazeem, R. N. Çelik, and A. El-Rabbany, "An accurate Kriging-based regional ionospheric model using combined GPS/BeiDou observations," Journal of Applied Geodesy, vol. 12, no. 1, pp. 65-76, 2018. [ DOI:10.1515/jag-2017-0023] 12. [12] M. Ligas and M. Kulczycki, "Kriging approach for local height transformations," Geodesy and Cartography, vol. 63, no. 1, 2014. [ DOI:10.2478/geocart-2014-0002] 13. [13] Y. Cao, Z. Li, J. Wei, J. Hu, M. Duan, and G. Feng, "Stochastic modeling for time series InSAR: with emphasis on atmospheric effects," Journal of Geodesy, vol. 92, no. 2, pp. 185-204, 2018. [ DOI:10.1007/s00190-017-1055-5] 14. [14] R. Webster and M. A. Oliver, Geostatistics for environmental scientists. John Wiley & Sons, 2007. [ DOI:10.1002/9780470517277] 15. [15] H. Moritz, "Advanced physical geodesy," Advances in Planetary Geology, 1980. 16. [16] B. Behnabian, M. Mashhadi Hossainali, and A. Malekzadeh, "Simultaneous estimation of cross-validation errors in least squares collocation applied for statistical testing and evaluation of the noise variance components," Journal of geodesy, vol. 92, pp. 1329-1350,, 2018. [ DOI:10.1007/s00190-018-1122-6]
|