[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 3، شماره 1 - ( 3-1394 ) ::
جلد 3 شماره 1 صفحات 45-60 برگشت به فهرست نسخه ها
تاثیر انتخاب ویژگی به کمک الگوریتم ژنتیک بر طبقه بندی طیفی مکانی تصاویر ابرطیفی
داود اکبری ، عبدالرضا صفری، صفا خزائی
دانشجوی دکتری دانشگاه تهران
چکیده:   (1939 مشاهده)

فن‌آوری سنجش از دور ابرطیفی دارای کاربردهای فراوان در طبقه­بندی پوشش‌های زمین و بررسی تغییرات آنها می‌باشد. با پیشرفت‌های اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توام از اطلاعات طیفی و مکانی را در طبقه­ بندی تصاویر ابرطیفی ایجاب می‌کند. در این تحقیق سعی می‌گردد تاثیر کاهش ابعاد به کمک الگوریتم ژنتیک را در فرآیند طبقه­ بندی طیفی-مکانی تصاویر ابرطیفی بررسی شود. در میان الگوریتم‌های مختلف طبقه­ بندی طیفی-مکانی تصاویر ابرطیفی، تاکنون سه الگوریتم قطعه­ بندی واترشد، هرمی و جنگل پوشای مینیمم مبتنی بر نشانه در ترکیب با الگوریتم طبقه­بندی ماشین بردار پشتیبان به بهترین نتایج دست یافته‌اند. در روش­ پیشنهادی ابتدا به کمک الگوریتم ژنتیک ابعاد تصویر ابرطیفی کاهش یافته سپس بر روی باندهای حاصل، سه الگوریتم قطعه­ بندی مذکور پیاده­ سازی گردید. در نهایت نقشه­ های قطعه­ بندی بدست آمده به کمک قانون تصمیم رای اکثریت با نقشه طبقه­ بندی ماشین بردار پشتیبان ترکیب شد. روش­ پیشنهادی بر روی سه تصویر ابرطیفی Pavia،  Telops و DC Mall پیاده­ سازی گردید، نتایج آزمایشات بدست‌آمده برتری استفاده از کاهش ابعاد در الگوریتم جنگل پوشای مینیمم مبتنی بر نشانه و استفاده از تمام باندهای تصویر در الگوریتم های واترشد و هرمی مبتنی بر نشانه را نشان می‌دهد. 

واژه‌های کلیدی: تصویر ابرطیفی، طبقه بندی طیفی مکانی، کاهش ابعاد، الگوریتم ژنتیک
متن کامل [PDF 895 kb]   (687 دریافت)    
نوع مطالعه: پژوهشي |
دریافت: ۱۳۹۴/۱۱/۲ | پذیرش: ۱۳۹۴/۱۱/۲ | انتشار: ۱۳۹۴/۱۱/۲
فهرست منابع
1. [1] P. K. Varshney, and M. K. Arora, "Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data", Springer Berlin Heidelberg New York, 2004. [DOI:10.1007/978-3-662-05605-9]
2. [2] R. C. Gonzalez, and R. E. Woods, "Digital Image Processing", Prentice Hall, 2002, 617 – 626.
3. [3] S. Homayouni, and M. Roux, "Material Mapping from Hyperspectral Images using Spectral Matching in Urban Area", IEEE Workshop on Advances in Techniques for analysis of Remotely Sensed Data, NASA Goddard center, Washington DC, USA, 2003.
4. [4] C. I. Chang, Hyperspectral Imaging: Techniques for spectral Detection and Classification. Orlando, FL: Kluwer Academic, 2003. [DOI:10.1007/978-1-4419-9170-6]
5. [5] V. Vapnik, The Nature of Statistical Learning Theory. New York, NY: Springer-Verlag, 1995.
6. [6] Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, "Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers", IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, pp. 1267–1279, 2010. [DOI:10.1109/TSMCB.2009.2037132]
7. [7] J. A. Richards, and X. Jia, Remote Sensing Digital Image Analysis: An Introduction. Springer- Verlag Berlin Heidelberg, 2006.
8. [8] J. A. Richards, and X. Jia, Remote Sensing Digital Image Analysis: An Introduction. Springer- Verlag Berlin Heidelberg, 2006.
9. [9] X. Huang, and L. Zhang, "A comparative study of spatial approaches for urban mapping using hyperspectral rosis images over pavia city, northern Italy", International Journal of Remote Sensing, 30(12):3205–3221, 2009. [DOI:10.1080/01431160802559046]
10. [10] J. A. Benediktsson, M. Pesaresi, and K. Arnason, "Classification and feature extraction for remote sensing images from urban areas based on morphological transformations", IEEE Trans. Geos. And Remote Sens., 41(9):1940–1949, 2003. [DOI:10.1109/TGRS.2003.814625]
11. [11] M. Pesaresi, and J. A. Benediktsson, "A new approach for the morphological segmentation of high-resolution satellite imagery", IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 309–320, 2001. [DOI:10.1109/36.905239]
12. [12] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles", IEEE Trans. Geos. and Remote Sens., 43(3):480–491, 2005. [DOI:10.1109/TGRS.2004.842478]
13. [13] Y. Tarabalka, J. C. Tilton, J. A. Benediktsson, and J. Chanussot, "A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011.
14. [14] A. Bitam, and S. Ameur, "A local-spectral fuzzy segmentation for MSG multispectral images", International Journal of Remote Sensing, 34: 8360–8372, 2013. [DOI:10.1080/01431161.2013.838707]
15. [15] Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques", IEEE Translation Geoscience Remote Sensing, 47(9): 2973–2987, 2009. [DOI:10.1109/TGRS.2009.2016214]
16. [16] Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Multiple spectral-spatial classification approach for hyperspectral data", IEEE Translation Geoscience Remote Sensing, 48(11): 4122–4132, 2010. [DOI:10.1109/TGRS.2010.2062526]
17. [17] P. Soille, Morphological Image Analysis. 2nd ed. Berlin, Germany: Springer-Verlag, 2003.
18. [18] O. Gómez, J. A. González, and E. F. Morales, "Image segmentation using automatic seeded region growing and instance-based learning", in Proc. 12th Iberoamerican Congress Pattern Recognition, Valparaiso, Chile, 192–201, 2007.
19. [19] G. Noyel, "Filtrage, Réduction de Dimension, Classification et Segmentation Morphologique Hyperspectrale", Ph.D. dissertation, Ctr. Mathematical Morphology, Paris Sch. Mines, Paris, France, 2008.
20. [20] G. Noyel, J. Angulo, and D. Jeulin, "Morphological segmentation of hyperspectral images", Image Anal. Stereol., 26: 101–109, 2007. [DOI:10.5566/ias.v26.p101-109]
21. [21] L. Zhuo, and J. Zheng, "A Genetic Algorithm Based Wrapper Feature Selection Method for Classification of Hyperspectral Image Using Support Vector Machine", The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 397-402, 2008. [DOI:10.1117/12.813256]
22. [22] C.-L. Huang, and C.-J. Wang, "A GA-based feature selection and parameter optimization for support vector machines", Expert Systems with Application, 231-240, 2006. [DOI:10.1016/j.eswa.2005.09.024]
23. [23] L. Vincent, and P. Soille, "Watersheds in digital spaces: an efficient algorithm based on immersion simulations", IEEE Translation Pattern Anal. Mach. Intell., 583–598, 1991.
24. [24] J. Tilton, "Analysis of hierarchically related image segmentations", in Proc. IEEE Workshop Adv. Tech. Anal. Remotely Sensed Data, 60–69, 2003. [DOI:10.1109/WARSD.2003.1295173]
25. [25] J. Tilton, "RHSEG User's Manual: Including the Core RHSEG Open Source Release, HSEGExtract, HSEGReader and HSEGViewer", 2009.
26. [26] F. Van der Meer, "The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery", Int. J. Appl. Earth Observation Geoinformation, vol. 8, no. 1, pp. 3–17, 2006. [DOI:10.1016/j.jag.2005.06.001]
27. [27] N. Cristianini, and J. Shawe-Taylor, "An Introduction to Support Vector Machines and Other Kernel-based Learning Methods", Cambridge University Press, 2000. [DOI:10.1017/CBO9780511801389]
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akbari D, Safari A, Khazai S. The effect of feature selection using genetic algorithms on spectral-spatial classification of hyperspectral imagery. jgit. 2015; 3 (1) :45-60
URL: http://jgit.kntu.ac.ir/article-1-191-fa.html

اکبری داود، صفری عبدالرضا، خزائی صفا. تاثیر انتخاب ویژگی به کمک الگوریتم ژنتیک بر طبقه بندی طیفی مکانی تصاویر ابرطیفی. مهندسی فناوری اطلاعات مکانی. 1394; 3 (1) :45-60

URL: http://jgit.kntu.ac.ir/article-1-191-fa.html



دوره 3، شماره 1 - ( 3-1394 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 29 queries by YEKTAWEB 3742