1. [1] M. R. McHale, E. G. McPherson, and I. C. Burke, "The potential of urban tree plantings to be cost effective in carbon credit markets," Urban Forestry & Urban Greening, vol. 6, pp. 49-60, 2007. [ DOI:10.1016/j.ufug.2007.01.001] 2. [2] T. Blaschke, "Object based image analysis for remote sensing," ISPRS journal of photogrammetry and remote sensing, vol. 65, pp. 2-16, 2010. [ DOI:10.1016/j.isprsjprs.2009.06.004] 3. [3] T. Brandtberg, "Classifying individual tree species under leaf-off and leaf-on conditions using airborne lidar," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 61, pp. 325-340, 2007. [ DOI:10.1016/j.isprsjprs.2006.10.006] 4. [4] B. Höfle, M. Hollaus, and J. Hagenauer, "Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 67, pp. 134-147, 2012. [ DOI:10.1016/j.isprsjprs.2011.12.003] 5. [5] C. Berger, M. Voltersen, R. Eckardt, J. Eberle, T. Heyer, N. Salepci, et al., "Multi-modal and multi-temporal data fusion: Outcome of the 2012 GRSS data fusion contest," Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, vol. 6, pp. 1324-1340, 2013. [ DOI:10.1109/JSTARS.2013.2245860] 6. [6] Q. Xiao, S. Ustin, and E. McPherson, "Using AVIRIS data and multiple-masking techniques to map urban forest tree species," International Journal of Remote Sensing, vol. 25, pp. 5637-5654, 2004. [ DOI:10.1080/01431160412331291224] 7. [7] G. Le Maire, C. Francois, and E. Dufrene, "Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements," Remote sensing of environment, vol. 89, pp. 1-28, 2004. [ DOI:10.1016/j.rse.2003.09.004] 8. [8] M. Voss and R. Sugumaran, "Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object-oriented approach," Sensors, vol. 8, pp. 3020-3036, 2008. [ DOI:10.3390/s8053020] 9. [9] G. P. Hughes, "On the mean accuracy of statistical pattern recognizers," Information Theory, IEEE Transactions on, vol. 14, pp. 55-63, 1968. [ DOI:10.1109/TIT.1968.1054102] 10. [10] H. Balzter, L. Skinner, A. Luckman, and R. Brooke, "Estimation of tree growth in a conifer plantation over 19 years from multi-satellite L-band SAR," Remote Sensing of Environment, vol. 84, pp.184-191, 2003. [ DOI:10.1016/S0034-4257(02)00106-2] 11. [11] J. Baker and H. Balzter, "Observations of the wintertime boreal environment using radar remote sensing techniques," Institute of Terrestrial Ecology Monks Wood, 1999. 12. [12] J. Fransson, "Estimation of stem volume in boreal forests using ERS-1 C-and JERS-1 L-band SAR data," International Journal of Remote Sensing, vol. 20, pp. 123-137, 1999. [ DOI:10.1080/014311699213640] 13. [13] L. E. Pierce, F. T. Ulaby, K. Sarabandi, and M. C. Dobson, "Knowledge-based classification of polarimetric SAR images," Geoscience and Remote Sensing, IEEE Transactions on, vol. 32, pp. 1081-1086, 1994. [ DOI:10.1109/36.312896] 14. [14] S. Myeong, D. J. Nowak, and M. J. Duggin, "A temporal analysis of urban forest carbon storage using remote sensing," Remote Sensing of Environment, vol. 101, pp. 277-282, 2006. [ DOI:10.1016/j.rse.2005.12.001] 15. [15] J. S. Walker and J. M. Briggs, "An object-oriented approach to urban forest mapping in Phoenix," Photogrammetric Engineering & Remote Sensing, vol. 73, pp. 577-583, 2007. [ DOI:10.14358/PERS.73.5.577] 16. [16] J. P. Ardila, V. A. Tolpekin, W. Bijker, and A. Stein, "Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, pp. 762-775, 2011. [ DOI:10.1016/j.isprsjprs.2011.08.002] 17. [17] A. Bannari, D. Morin, F. Bonn, and A. Huete, "A review of vegetation indices," Remote sensing reviews, vol. 13, pp. 95-120, 1995. [ DOI:10.1080/02757259509532298] 18. [18] A. A. Gitelson, "Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation," Journal of plant physiology, vol. 161, pp. 165-173, 2004. [ DOI:10.1078/0176-1617-01176] 19. [19] A. D. Richardson, S. Klosterman, and M. Toomey, "Near-surface sensor-derived phenology," in Phenology: An Integrative Environmental Science, ed: Springer, 2013, pp. 413-430. [ DOI:10.1007/978-94-007-6925-0_22] 20. [20] A. P. Lopes, B. W. Nelson, P. M. Graça, J. Wu, J. V. Tavares, N. Prohaska, et al., "Band combinations for detecting leaf amount and leaf age in QuickBird satellite and RGB camera images," in Brazilian Symposium on Remote Sensing, 2015, pp. 1671-1677. 21. [21] A. A. Gitelson, Y. J. Kaufman, R. Stark, and D. Rundquist, "Novel algorithms for remote estimation of vegetation fraction," Remote Sensing of Environment, vol. 80, pp.76-87, 2002. [ DOI:10.1016/S0034-4257(01)00289-9] 22. [22] F. Albregtsen, "Statistical texture measures computed from gray level coocurrence matrices," Image processing laboratory, department of informatics, university of oslo, pp. 1-14, 2008. 23. [23] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, "Textural features for image classification," Systems, Man and Cybernetics, IEEE Transactions on, pp. 610-621, 1973. [ DOI:10.1109/TSMC.1973.4309314] 24. [24] M. De Martinao, F. Causa, and S. B. Serpico, "Classification of optical high resolution images in urban environment using spectral and textural information," in Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings. 2003 IEEE International, 2003, pp. 467-469. [ DOI:10.1109/IGARSS.2003.1293811] 25. [25] A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," Geoscience and Remote Sensing, IEEE Transactions on, vol. 26, pp. 65-74, 1988. [ DOI:10.1109/36.3001] 26. [26] U. Amato, R. M. Cavalli, A. Palombo, S. Pignatti, and F. Santini, "Experimental approach to the selection of the components in the minimum noise fraction," Geoscience and Remote Sensing, IEEE Transactions on, vol. 47, pp. 153-160, 2009. [ DOI:10.1109/TGRS.2008.2002953] 27. [27] J. B. Lee and M. Berman, "Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform," Geoscience and Remote Sensing, IEEE Transactions on, vol. 28, pp. 295-304, 1990. [ DOI:10.1109/36.54356] 28. [28] J. D. Paola and R. Schowengerdt, "A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification," Geoscience and Remote Sensing, IEEE Transactions on, vol. 33, pp. 981-996, 1995. [ DOI:10.1109/36.406684] 29. [29] A. H. Strahler, "The use of prior probabilities in maximum likelihood classification of remotely sensed data," Remote Sensing of Environment, vol. 10, pp.135-163, 1980. [ DOI:10.1016/0034-4257(80)90011-5] 30. [30] M. Shaban and O. Dikshit, "Improvement of classification in urban areas by the use of textural features: the case study of Lucknow city, Uttar Pradesh," International Journal of Remote Sensing, vol. 22, pp. 565-593, 2001. [ DOI:10.1080/01431160050505865]
|