1. [1] J.S. Lee, M.R. Grunes, and R. Kwok, "Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution," International Journal of Remote Sensing, 15(11), 2299–2311, 1994. [ DOI:10.1080/01431169408954244] 2. [2] Maghsoudi, Y., "Analysis of Radarsat-2 Full Polarimetric Data for Forest Mapping," Ph.D. dissertation, Calgary University, Calgary, The Canada, 2011. 3. [3] Alberga, V., "Comparison of polarimetric methods in image classification and SAR interferometry applications," PhD thesis, Fakultat fiir Elektrotechnik und Informationstechnik der technischen Universitat Chemnitz genehmigte, 2003. 4. [4] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," in Proceedings of the fifth annual workshop on Computational learning theory, pp. 144 -152, 1992. [ DOI:10.1145/130385.130401] 5. [5] J. Benediktsson, P. H. Swain, and O. K. Ersoy, "Neural network approaches versus statistical methods in classification of multisource remote sensi ng data," IEEE Transactions on geoscience and remote sensing, vol. 28, pp. 540-552, 1990. [ DOI:10.1109/TGRS.1990.572944] 6. [6] Zhang, B. Zou, J. Zhang and Y. Zhang, "Classification of polarimetric SAR image based on support vector machine using multiple-component scattering model and texture features," EURASIP Journal on Advances in Signal Processing, vol. 2010, p. 1, 2010. 7. [7] D. Gleich, "Markov random field models for non-quadratic regularization of complex SAR images," Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, vol. 5, pp. 952-961, 2012. [ DOI:10.1109/JSTARS.2011.2179524] 8. [8] Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVM-and MRF-based method for accurate classification of hyperspectral images," Geoscience and Remote Sensing Letters, IEEE, vol. 7, pp. 736-740, 2010. [ DOI:10.1109/LGRS.2010.2047711] 9. [9] Y. Wu, K. Ji, W. Yu, and Y. Su, "Region-based classification of polarimetric SAR images using Wishart MRF," Geoscience and Remote Sensing Letters, IEEE, vol. 5, pp. 668-672, 2008. [ DOI:10.1109/LGRS.2008.2002263] 10. [10] A. Dargahi, Y. Maghsoudi, and A. Abkar, "Unsupervised Classification of Polarimetric SAR Imagery Using Scattering Mechnism and Markove Random Fields," Journal of Radar, vol. 1, pp. 15-25, 2013. 11. [11] A. Dargahi, Y. Maghsoudi, and A. Abkar, "Supervised Classification of Polarimetric SAR Imagery Using Temporal and Contextual Information," ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 1, pp. 107-110, 2013. [ DOI:10.5194/isprsarchives-XL-1-W3-107-2013] 12. [12] Z. Wu, Q. Ouyang, "SVM- and MRF-Based Method for Contextual Classification of Polarimetric SAR Images," Remote Sensing, Environment and Transportation Engineering (RSETE), International Conference on Digital Object Identifier, IEEE, pp. 818 - 821, 2011. 13. [13] Zhang, B., Li, S., Jia, X., Gao, L., Peng, M. Adaptive Markov random field approach for classification of hyperspectral imagery. Geoscience and Remote Sensing Letters, IEEE 8, pp. 973-977, 2011. [ DOI:10.1109/LGRS.2011.2145353] 14. [14] G. Moser, and S. B. Serpico, "Combining Support Vector Machines and Markov Random Fields in an Integrated Framework for Contextual Image Classification," IEEE Trans. Geosci. Remote Sensing, vol. 51, no. 5, pp. 2734–2752, May. 2013. 15. [15] V. N. Vapnik, Statistical Learning Theory. Hoboken, NJ: Wiley, 1998. 16. [16] S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration," IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 6, pp. 721–741, Nov. 1984. [ DOI:10.1109/TPAMI.1984.4767596] 17. [17] S. Li, Markov Random Field Modeling in Image Analysis. Berlin, Germany: Springer-Verlag, 2009. 18. [18] Q. Jackson and D. Landgrebe, "Adaptive Bayesian contextual classification based on Markov random fields," IEEE Trans. Geosci. Remote Sensing, vol. 40, no. 11, pp. 2454–2463, Nov. 2002. [ DOI:10.1109/TGRS.2002.805087] 19. [19] A. H. S. Solberg, T. Taxt, and A. K. Jain, "A Markov random field model for classification of multisource satellite imagery," IEEE Trans. Geosci. Remote Sens., vol. 34, no. 1, pp. 100–113, Jan. 1996. [ DOI:10.1109/36.481897] 20. [20] T. Zhang, F. Hu, and R. Yang, "Polarimetric SAR image segmentation by an adaptive neighborhood Markov random field," J. Test Meas. Technol., vol. 23, no. 5, pp. 462–465, 2009. 21. [21] P. Zhong and R. Wang, "Image segmentation based on Markov random fields with adaptive neighborhood systems," Opt. Eng., vol. 45, no. 9, pp. 462–465, 2009. 22. [22] A. Garzelli, "Classification of polarimetric SAR images using adaptive neighborhood structures," Int. J. Remote Sens., vol. 20, no. 8, pp. 1669–1675, 1999. [ DOI:10.1080/014311699212678] 23. [23] X., Niu, Y., Ban, "An Adaptive Contextual SEM Algorithm for Urban Land Cover Mapping Using Multitemporal High-Resolution Polarimetric SAR Data", Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, vol. 5, no. 4, pp. 1129-1139, 2012. [ DOI:10.1109/JSTARS.2012.2201448]
|