1. [1] K. S. Willis, "Remote sensing change detection for ecological monitoring in United States protected areas," Biol. Conserv., vol. 182, pp. 233–242, Feb. 2015. [ DOI:10.1016/j.biocon.2014.12.006] 2. [2] L. J. Zhang, H. Z. Ma, X. B. Zhu, and L. Sun, "Retrieval of Vegetation Canopy Water Content Based on Spectral Index Method," Appl. Mech. Mater., vol. 295–298, pp. 2446–2450, Feb. 2013. [ DOI:10.4028/www.scientific.net/AMM.295-298.2446] 3. [3] A. Gonsamo and J. M. Chen, "Spectral Response Function Comparability Among 21 Satellite Sensors for Vegetation Monitoring," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 3, pp. 1319–1335, Mar. 2013. [ DOI:10.1109/TGRS.2012.2198828] 4. [4] J. Verrelst et al., "Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties – A review," ISPRS J. Photogramm. Remote Sens., vol. 108, pp. 273–290, Oct. 2015. [ DOI:10.1016/j.isprsjprs.2015.05.005] 5. [5] W. J. D. van Leeuwen, B. J. Orr, S. E. Marsh, and S. M. Herrmann, "Multi-sensor NDVI data continuity: Uncertainties and implications for vegetation monitoring applications," Remote Sens. Environ., vol. 100, no. 1, pp. 67–81, Jan. 2006. [ DOI:10.1016/j.rse.2005.10.002] 6. [6] P. D'Odorico, A. Gonsamo, A. Damm, and M. E. Schaepman, "Experimental Evaluation of Sentinel-2 Spectral Response Functions for NDVI Time-Series Continuity," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 3, pp. 1336–1348, Mar. 2013. [ DOI:10.1109/TGRS.2012.2235447] 7. [7] "SPOT-5 - eoPortal Directory - Satellite Missions." [Online]. Available: https://directory.eoportal.org/web/eoportal/satellite-missions/s/spot-5. [Accessed: 17-Oct-2016]. 8. [8] Alexander P. Trishchenko, Josef Cihlar, and Zhanqing Li, "Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors," Remote Sensing of Environment, vol. 81, pp. 1–18, 2002. [ DOI:10.1016/S0034-4257(01)00328-5] 9. [9] A. P. Trishchenko, "Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors: Extension to AVHRR NOAA-17, 18 and METOP-A," Remote Sens. Environ., vol. 113, no. 2, pp. 335–341, Feb. 2009. [ DOI:10.1016/j.rse.2008.10.002] 10. [10] E. Swinnen and F. Veroustraete, "Extending the SPOT-VEGETATION NDVI Time Series Back in Time With NOAA-AVHRR Data for Southern Africa," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 2, pp. 558–572, Feb. 2008. [ DOI:10.1109/TGRS.2007.909948] 11. [11] K. Gallo, L. Ji, B. Reed, J. Eidenshink, and J. Dwyer, "Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data," Remote Sens. Environ., vol. 99, no. 3, pp. 221–231, Nov. 2005. [ DOI:10.1016/j.rse.2005.08.014] 12. [12] A. A. Gitelson and Y. J. Kaufman, "MODIS NDVI Optimization To Fit the AVHRR Data Series—Spectral Considerations," Remote Sens. Environ., vol. 66, no. 3, pp. 343–350, Dec. 1998. [ DOI:10.1016/S0034-4257(98)00065-0] 13. [13] K. P. Günther and S. W. Maier, "AVHRR compatible vegetation index derived from MERIS data," Int. J. Remote Sens., vol. 28, no. 3–4, pp. 693–708, Feb. 2007. [ DOI:10.1080/01431160600815541] 14. [14] J.-B. Feret et al., "PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments," Remote Sens. Environ., vol. 112, no. 6, pp. 3030–3043, Jun. 2008. [ DOI:10.1016/j.rse.2008.02.012] 15. [15] W. Verhoef, L. Jia, Q. Xiao, and Z. Su, "Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 6, pp. 1808–1822, Jun. 2007. [ DOI:10.1109/TGRS.2007.895844] 16. [16] S. Jacquemoud et al., "PROSPECT+SAIL models: A review of use for vegetation characterization," Remote Sens. Environ., vol. 113, pp. S56–S66, Sep. 2009. [ DOI:10.1016/j.rse.2008.01.026] 17. [17] S. Jacquemoud et al., "PROSPECT+SAIL: 15 Years of Use for Land Surface Characterization," 2006, pp. 1992–1995. 18. [18] S. Jacquemoud and F. Baret, "PROSPECT: A model of leaf optical properties spectra," Remote Sens. Environ., vol. 34, no. 2, pp. 75–91, Nov. 1990. [ DOI:10.1016/0034-4257(90)90100-Z] 19. [19] G. le Maire, C. François, and E. Dufrêne, "Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements," Remote Sens. Environ., vol. 89, no. 1, pp. 1–28, Jan. 2004. [ DOI:10.1016/j.rse.2003.09.004] 20. [20] W. A. Allen, H. W. Gausman, A. J. Richardson, and J. R. Thomas, "Interaction of Isotropic Light with a Compact Plant Leaf," J. Opt. Soc. Am., vol. 59, no. 10, p. 1376, Oct. 1969. [ DOI:10.1364/JOSA.59.001376] 21. [21] Y. Zeng, R. Shi, P. Liu, J. Ai, and C. Zhou, "Simulation and analysis of NDVI performance based on vegetation canopy radiative transfer model," 2015, p. 961017. 22. [22] W. Verhoef, "Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model," Remote Sens. Environ., vol. 16, no. 2, pp. 125–141, Oct. 1984. [ DOI:10.1016/0034-4257(84)90057-9] 23. [23] W. Verhoef, "Earth observation modeling based on layer scattering matrices," Remote Sens. Environ., vol. 17, no. 2, pp. 165–178, Apr. 1985. [ DOI:10.1016/0034-4257(85)90072-0] 24. [24] A. Kuusk, "The Hot Spot Effect in Plant Canopy Reflectance," in Photon-Vegetation Interactions, D. R. B. Myneni and A. P. D. J. Ross, Eds. Springer Berlin Heidelberg, 1991, pp. 139–159. 25. [25] N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44–57, Jan. 2002. [ DOI:10.1109/79.974727] 26. [26] C. Shi and L. Wang, "Linear Spatial Spectral Mixture Model," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3599–3611, Jun. 2016. [ DOI:10.1109/TGRS.2016.2520399] 27. [27] A. Saltelli, S. Tarantola, and K. P.-S. Chan, "A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output," Technometrics, vol. 41, no. 1, pp. 39–56, Feb. 1999. [ DOI:10.1080/00401706.1999.10485594] 28. [28] J. Morio, "Global and local sensitivity analysis methods for a physical system," Eur. J. Phys., vol. 32, no. 6, pp. 1577–1583, Nov. 2011. [ DOI:10.1088/0143-0807/32/6/011] 29. [29] J. Yang, "Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis," Environ. Model. Softw., vol. 26, no. 4, pp. 444–457, Apr. 2011. [ DOI:10.1016/j.envsoft.2010.10.007] 30. [30] A. Saltelli, Ed., Global sensitivity analysis: the primer. Chichester, England; Hoboken, NJ: John Wiley, 2008. 31. [31] J. Nossent, P. Elsen, and W. Bauwens, "Sobol' sensitivity analysis of a complex environmental model," Environ. Model. Softw., vol. 26, no. 12, pp. 1515–1525, Dec. 2011. [ DOI:10.1016/j.envsoft.2011.08.010] 32. [32] Verrelst, Jochem, Rivera, Juan Pablo, Mardashova, Maria, and Moreno, Jose, "ARTMO's Global Sensitivity Analysis (GSA) toolbox to quantify driving variables of leaf and canopy radiative transfer models." EARSeL eProceedings, 2015. 33. [33] T. Homma and A. Saltelli, "Importance measures in global sensitivity analysis of nonlinear models," Reliab. Eng. Syst. Saf., vol. 52, no. 1, pp. 1–17, Apr. 1996. [ DOI:10.1016/0951-8320(96)00002-6] 34. [34] S. Imanyfar, M. Hasanlou, M. Motagh, M. Rostamnia, "determination of the extent and severity of oak decline in malekhahi city using landsat imagery," presented at the the first natinal conference on geospatial information technology(NCGIT), 2016. 35. [35] E. M. Middleton and E. A. Walter-Shea, "Optical properties of canopy elements in the boreal forest," in Geoscience and Remote Sensing Symposium, 1995. IGARSS '95. "Quantitative Remote Sensing for Science and Applications", International, 1995, vol. 1, pp. 789–793 vol.1. [ DOI:10.1109/IGARSS.1995.520586] 36. [36] A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, "The ASTER spectral library version 2.0," Remote Sens. Environ., vol. 113, no. 4, pp. 711–715, Apr. 2009. [ DOI:10.1016/j.rse.2008.11.007] 37. [37] X. Gao, "Optical–Biophysical Relationships of Vegetation Spectra without Background Contamination," Remote Sens. Environ., vol. 74, no. 3, pp. 609–620, Dec. 2000. [ DOI:10.1016/S0034-4257(00)00150-4] 38. [38] T. N. Carlson and D. A. Ripley, "On the relation between NDVI, fractional vegetation cover, and leaf area index," Remote Sens. Environ., vol. 62, no. 3, pp. 241–252, Dec. 1997. [ DOI:10.1016/S0034-4257(97)00104-1] 39. [39] B. Gao, "NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space," Remote Sens. Environ., vol. 58, no. 3, pp. 257–266, Dec. 1996. [ DOI:10.1016/S0034-4257(96)00067-3] 40. [40] S. Imanyfar, M. Hasanlou, "study of the impact of the SRF difference on vegetation indices time series, between landsat and sentinel-2 sensors," presented at the Geomatic conference, 2016. 41. [41] R. N. Clark, G. A. Swayze, R. Wise, K. E. Livo, T. M. Hoefen, R. F. Kokaly, and S. J. Sutley,USGS Digital Spectral Library splib06a, U.S. Geological Survey, Data Series 231 , 2007. 42. [42] J. Rivera, J. Verrelst, J. Gómez-Dans, J. Mu-oz-Marí, J. Moreno, and G. Camps-Valls, "An Emulator Toolbox to Approximate Radiative Transfer Models with Statistical Learning," Remote Sens., vol. 7, no. 7, pp. 9347–9370, Jul. 2015. [ DOI:10.3390/rs70709347]
|