[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 308
نرخ پذیرش: 62.7
نرخ رد: 37.3
میانگین داوری: 209 روز
میانگین انتشار: 344 روز
..
:: دوره 5، شماره 3 - ( 9-1396 ) ::
جلد 5 شماره 3 صفحات 151-123 برگشت به فهرست نسخه ها
پایش و پیش‌بینی شدت جزیره حرارتی شهر بابل با توجه به گسترش شهری و تغییرات کاربری اراضی در بازه زمانی 1394-1364
محمد کریمی فیروزجائی ، مجید کیاورز* ، سیدکاظم علوی پناه
دانشگاه تهران
چکیده:   (4804 مشاهده)
جزیره حرارتی شهری یکی از مهم‌ترین خطرات زیست محیطی مناطق شهری میباشد. استفاده از فناوری سنجش از دور به دلیل فراهم کردن دید یکپارچه، کم‌هزینه و سریع یک روش کارآمد برای مطالعه و پایش تغییرات محیطی محسوب میشود. هدف از این پژوهش بررسی فضایی-زمانی تغییرات شدت جزیره حرارتی در بازه زمانی 1394- 1364و پیشبینی تغییرات شدت جزیره حرارتی محدوده مورد مطالعه در شهرستان بابل میباشد. برای این منظور در این پژوهش از تصاویر چند زمانه لندست، محصول بخار آب مودیس و داده¬های زمینی استفاده شده است. برای محاسبه دمای سطح زمین از الگوریتم تک باندی و برای طبقهبندی تصاویر از الگوریتم بیشترین شباهت استفاده شده است. تغییرات کاربری اراضی و دمای سطح زمین بررسی و سپس رابطه بین تغییرات کاربری اراضی با دمای سطح نرمال شده تحلیل شد. با بهرهگیری از میانگین و انحراف معیار تصاویر حرارتی نرمال شده، منطقه به پنج کلاس دمایی طبقهبندی و با استفاده از شاخص شدت جزیره حرارتی، میزان تغییرات جزیره حرارتی در طول بازه زمانی مورد مطالعه بررسی شده است. تغییر کاربری اراضی برای آینده با استفاده از مدل مارکوف بررسی و با توجه به آن تغییرات شدت جزیره حرارتی پیشبینی شده است. نتایج پژوهش نشان دهنده این است که تغییرات کاربری اراضی به نحوی بوده که اراضی ساخته‌شده با رشد 92 درصدی و اراضی کشاورزی با کاهش چشمگیری مواجه شده‌اند. روند تغییرات اراضی ساختهشده با روند تغییرات دمای سطح نرمال شده رابطه مستقیم دارد. طبقات دمایی بالا و بسیار بالا در نزدیکی هسته شهر و راههای خروجی از شهر قرار دارند که در طی این سالها با روند افزایش مساحت روبه هستند. شاخص نسبت جزیره حرارتی در طی این دوره روند رو به رشدی داشته و مقدار این شاخص از 5/0 در سال 1364 به 67/0 در سال 1394 رسیده است. پیشبینی تغییرات کاربری اراضی و فرایند تغییر شدت جزیره حرارتی برای منطقه مورد مطالعه نتایج نگران کننده‌ای را نشان میدهد.
واژه‌های کلیدی: پایش، مکانی-زمانی، کاربری اراضی، جزیره حرارتی شهری، بابل
متن کامل [PDF 4281 kb]   (2944 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سنجش از دور
دریافت: 1395/10/22 | پذیرش: 1396/4/11 | انتشار: 1396/10/20
فهرست منابع
1. [1] T. Owen, T. Carlson, and R. Gillies, "An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization," International journal of remote sensing, vol. 19, no. 9, pp. 1663-1681, 1998. [DOI:10.1080/014311698215171]
2. [2] F. Fan, Y. Wang, and Z. Wang, "Temporal and spatial change detecting (1998–2003) and predicting of land use and land cover in Core corridor of Pearl River Delta (China) by using TM and ETM+ images," Environmental Monitoring and Assessment, vol. 137, no. 1, pp. 127-147, 2008. [DOI:10.1007/s10661-007-9734-y]
3. [3] J. Wu, "Urban ecology and sustainability: The state-of-the-science and future directions," Landscape and Urban Planning, vol. 125, pp. 209-221, 2014. [DOI:10.1016/j.landurbplan.2014.01.018]
4. [4] R. Amiri, Q. Weng, A. Alimohammadi, and S. K. Alavipanah, "Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran," Remote sensing of environment, vol. 113, no. 12, pp. 2606-2617, 2009. [DOI:10.1016/j.rse.2009.07.021]
5. [5] T. Chandler, "Selected bibliography on urban climate. Tech," note1970.
6. [6] [6] N. Schwarz, U. Schlink, U. Franck, and K. Großmann, "Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany)," Ecological Indicators, vol. 18, pp. 693-704, 2012. [DOI:10.1016/j.ecolind.2012.01.001]
7. [7] J. A. Voogt and T. R. Oke, "Thermal remote sensing of urban climates," Remote sensing of environment, vol. 86, no. 3, pp. 370-384, 2003. [DOI:10.1016/S0034-4257(03)00079-8]
8. [8] X. L. Zhu, J. Chen, F. Gao, X. H. Chen, and J. G. Masek, "An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions," (in English), Remote Sensing of Environment, vol. 114, no. 11, pp. 2610-2623, Nov 15 2010. [DOI:10.1016/j.rse.2010.05.032]
9. [9] A. M. Rizwan, L. Y. Dennis, and L. Chunho, "A review on the generation, determination and mitigation of Urban Heat Island," Journal of Environmental Sciences, vol. 20, no. 1, pp. 120-128, 2008. [DOI:10.1016/S1001-0742(08)60019-4]
10. [10] F. Yuan and M. E. Bauer, "Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery," Remote Sensing of environment, vol. 106, no. 3, pp. 375-386, 2007. [DOI:10.1016/j.rse.2006.09.003]
11. [11] M. Santamouris and D. Kolokotsa, "On the impact of urban overheating and extreme climatic conditions on housing, energy, comfort and environmental quality of vulnerable population in Europe," Energy and Buildings, vol. 98, pp. 125-133, 2015. [DOI:10.1016/j.enbuild.2014.08.050]
12. [12] C. W. Mackey, X. Lee, and R. B. Smith, "Remotely sensing the cooling effects of city scale efforts to reduce urban heat island," Building and Environment, vol. 49, pp. 348-358, 2012. [DOI:10.1016/j.buildenv.2011.08.004]
13. [13] J. C. Jiménez-Mu-oz and J. A. Sobrino, "A single-channel algorithm for land-surface temperature retrieval from ASTER data," IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 1, pp. 176-179, 2010. [DOI:10.1109/LGRS.2009.2029534]
14. [14] J. C. Jiménez‐Mu-oz and J. A. Sobrino, "A generalized single‐channel method for retrieving land surface temperature from remote sensing data," Journal of Geophysical Research: Atmospheres, vol. 108, no. D22, 2003.
15. [15] Q. Weng, "Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 64, no. 4, pp. 335-344, 2009. [DOI:10.1016/j.isprsjprs.2009.03.007]
16. [16] D. R. Streutker, "A remote sensing study of the urban heat island of Houston, Texas," International Journal of Remote Sensing, vol. 23, no. 13, pp. 2595-2608, 2002. [DOI:10.1080/01431160110115023]
17. [17] J. P. Walawender, M. Szymanowski, M. J. Hajto, and A. Bokwa, "Land surface temperature patterns in the urban agglomeration of Krakow (Poland) derived from Landsat-7/ETM+ data," Pure and Applied Geophysics, vol. 171, no. 6, pp. 913-940, 2014. [DOI:10.1007/s00024-013-0685-7]
18. [18] R. C. Balling and S. W. Brazel, "High-resolution surface temperature patterns in a complex urban terrain," Photogrammetric engineering and remote sensing, vol. 54, no. 9, pp. 1289-1293, 1988.
19. [19] K. Gallo, A. McNab, T. Karl, J. Brown, J. Hood, and J. Tarpley, "The use of NOAA AVHRR data for assessment of the urban heat island effect," Journal of Applied Meteorology, vol. 32, no. 5, pp. 899-908, 1993. https://doi.org/10.1175/1520-0450(1993)032<0899:TUONAD>2.0.CO;2 [DOI:10.1175/1520-0450(1993)0322.0.CO;2]
20. [20] K. P. Gallo and T. W. Owen, "Satellite-based adjustments for the urban heat island temperature bias," Journal of Applied Meteorology, vol. 38, no. 6, pp. 806-813, 1999. https://doi.org/10.1175/1520-0450(1999)038<0806:SBAFTU>2.0.CO;2 [DOI:10.1175/1520-0450(1999)0382.0.CO;2]
21. [21] C. Aniello, K. Morgan, A. Busbey, and L. Newland, "Mapping micro-urban heat islands using Landsat TM and a GIS," Computers & Geosciences, vol. 21, no. 8, pp. 965969-967, 1995. [DOI:10.1016/0098-3004(95)00033-5]
22. [22] X.-L. Chen, H.-M. Zhao, P.-X. Li, and Z.-Y. Yin, "Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes," Remote sensing of environment, vol. 104, no. 2, pp. 133-146, 2006. [DOI:10.1016/j.rse.2005.11.016]
23. [23] S. Haashemi, Q. Weng, A. Darvishi, and S. K. Alavipanah, "Seasonal variations of the surface urban heat island in a semi-arid city," Remote Sensing, vol. 8, no. 4, p. 352, 2016. [DOI:10.3390/rs8040352]
24. [24] J. Li, C. Song, L. Cao, F. Zhu, X. Meng, and J. Wu, "Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China," Remote Sensing of Environment, vol. 115, no. 12, pp. 3249-3263, 2011. [DOI:10.1016/j.rse.2011.07.008]
25. [25] X. Li, W. Zhou, Z. Ouyang, W. Xu, and H. Zheng, "Spatial pattern of greenspace affects land surface temperature: evidence from the heavily urbanized Beijing metropolitan area, China," Landscape ecology, vol. 27, no. 6, pp. 887-898, 2012. [DOI:10.1007/s10980-012-9731-6]
26. [26] L. Liu and Y. Zhang, "Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong," Remote Sensing, vol. 3, no. 7, pp. 1535-1552, 2011. [DOI:10.3390/rs3071535]
27. [27] U. Rajasekar and Q. Weng, "Urban heat island monitoring and analysis using a non-parametric model: A case study of Indianapolis," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 64, no. 1, pp. 86-96, 2009. [DOI:10.1016/j.isprsjprs.2008.05.002]
28. [28] L. Sang, C. Zhang, J. Yang, D. Zhu, and W. Yun, "Simulation of land use spatial pattern of towns and villages based on CA–Markov model," Mathematical and Computer Modelling, vol. 54, no. 3, pp. 938-943, 2011. [DOI:10.1016/j.mcm.2010.11.019]
29. [29] Y. Zhang and G. Hong, "An IHS and wavelet integrated approach to improve pan-sharpening visual quality of natural colour IKONOS and QuickBird images," Information Fusion, vol. 6, no. 3, pp. 225-234, 2005. [DOI:10.1016/j.inffus.2004.06.009]
30. [30] S. D. Chakraborty, Y. Kant, and D. Mitra, "Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data," Journal of environmental management, vol. 148, pp. 143-152, 2015. [DOI:10.1016/j.jenvman.2013.11.034]
31. [31] J. Jiang and G. Tian, "Analysis of the impact of land use/land cover change on land surface temperature with remote sensing," Procedia environmental sciences, vol. 2, pp. 571-575, 2010. [DOI:10.1016/j.proenv.2010.10.062]
32. [32] H. Saaroni, E. Ben-Dor, A. Bitan, and O. Potchter, "Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel," Landscape and Urban Planning, vol. 48, no. 1, pp. 1-18, 2000. [DOI:10.1016/S0169-2046(99)00075-4]
33. [33] N. V. Shabanov et al., "Effect of foliage spatial heterogeneity in the MODIS LAI and FPAR algorithm over broadleaf forests," (in English), Remote Sensing of Environment, vol. 85, no. 4, pp. 410-423, Jun 15 2003. [DOI:10.1016/S0034-4257(03)00017-8]
34. [34] R. Sharma and P. Joshi, "Identifying seasonal heat islands in urban settings of Delhi (India) using remotely sensed data–An anomaly based approach," Urban Climate, vol. 9, pp. 19-34, 2014. [DOI:10.1016/j.uclim.2014.05.003]
35. [35] Q. Weng, D. Lu, and J. Schubring, "Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies," Remote sensing of Environment, vol. 89, no. 4, pp. 467-483, 2004. [DOI:10.1016/j.rse.2003.11.005]
36. [36] H. Xiao and Q. Weng, "The impact of land use and land cover changes on land surface temperature in a karst area of China," Journal of environmental management, vol. 85, no. 1, pp. 245-257, 2007. [DOI:10.1016/j.jenvman.2006.07.016]
37. [37] X. Zhang, T. Zhong, X. Feng, and K. Wang, "Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing," International Journal of Remote Sensing, vol. 30, no. 8, pp. 2105-2118, 2009. [DOI:10.1080/01431160802549252]
38. [38] C. P. Lo, D. A. Quattrochi, and J. C. Luvall, "Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect," International Journal of Remote Sensing, vol. 18, no. 2, pp. 287-304, 1997. [DOI:10.1080/014311697219079]
39. [39] C. Deng and C. Wu, "Examining the impacts of urban biophysical compositions on surface urban heat island: A spectral unmixing and thermal mixing approach," Remote Sensing of Environment, vol. 131, pp. 262-274, 2013. [DOI:10.1016/j.rse.2012.12.020]
40. [40] M. Heinl, A. Hammerle, U. Tappeiner, and G. Leitinger, "Determinants of urban–rural land surface temperature differences–A landscape scale perspective," Landscape and Urban Planning, vol. 134, pp. 33-42, 2015. [DOI:10.1016/j.landurbplan.2014.10.003]
41. [41] O. Rotem-Mindali, Y. Michael, D. Helman, and I. M. Lensky, "The role of local land-use on the urban heat island effect of Tel Aviv as assessed from satellite remote sensing," Applied Geography, vol. 56, pp. 145-153, 2015. [DOI:10.1016/j.apgeog.2014.11.023]
42. [42] T. M. Tu, P. S. Huang, C. L. Hung, and C. P. Chang, "A Fast Intensity-Hue-Saturation Fusion Technique With Spectral Adjustment for IKONOS Imagery," (in English), Ieee Geoscience and Remote Sensing Letters, vol. 1, no. 4, pp. 309-312, Oct 2004. [DOI:10.1109/LGRS.2004.834804]
43. [43] M. Xunqiang, C. Chen, Z. Fuqun, and L. Hongyuan, "Study on temporal and spatial variation of the urban heat island based on Landsat TM/ETM+ in central city and Binhai New Area of Tianjin," in Multimedia Technology (ICMT), 2011 International Conference on, 2011, pp. 4616-4622: IEEE. [DOI:10.1109/ICMT.2011.6003213]
44. [44] W. Zhou, G. Huang, and M. L. Cadenasso, "Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes," Landscape and Urban Planning, vol. 102, no. 1, pp. 54-63, 2011. [DOI:10.1016/j.landurbplan.2011.03.009]
45. [45] M. A. Atwater, "Thermal changes induced by urbanization and pollutants," Journal of applied meteorology, vol. 14, no. 6, pp. 1061-1071, 1975. https://doi.org/10.1175/1520-0450(1975)014<1061:TCIBUA>2.0.CO;2 [DOI:10.1175/1520-0450(1975)0142.0.CO;2]
46. [46] W. R. Cotton and R. A. Pielke Sr, Human impacts on weather and climate. Cambridge University Press, 2007. [DOI:10.1017/CBO9780511808319]
47. [47] X. Han-qiu and C. Ben-qing, "Remote sensing of the urban heat island and its changes in Xiamen City of SE China," Journal of Environmental Sciences, vol. 16, no. 2, pp. 276-281, 2004.
48. [48] H. Xu, Y. Chen, S. Dan, and W. Qiu, "Spatial and temporal analysis of urban heat Island effects in Chengdu City by remote sensing," in Geoinformatics, 2011 19th International Conference on, 2011, pp. 1-5: IEEE. [DOI:10.1109/GeoInformatics.2011.5981043]
49. [49] N. Patel and B. Kaushal, "Classification of features selected through Optimum Index Factor (OIF) for improving classification accuracy," Journal of Forestry Research, vol. 22, no. 1, pp. 99-105, 2011. [DOI:10.1007/s11676-011-0133-4]
50. [50] J. R. Otukei and T. Blaschke, "Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms," International Journal of Applied Earth Observation and Geoinformation, vol. 12, pp. S27-S31, 2010. [DOI:10.1016/j.jag.2009.11.002]
51. [51] X. Yang, X.-Q. Zheng, and L.-N. Lv, "A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata," Ecological Modelling, vol. 233, pp. 11-19, 2012. [DOI:10.1016/j.ecolmodel.2012.03.011]
52. [52] K. Rajitha, C. Mukherjee, R. Vinu Chandran, and M. Prakash Mohan, "Land-cover change dynamics and coastal aquaculture development: a case study in the East Godavari delta, Andhra Pradesh, India using multi-temporal satellite data," International Journal of Remote Sensing, vol. 31, no. 16, pp. 4423-4442, 2010. [DOI:10.1080/01431160903277456]
53. [53] R. G. Pontius, "Quantification error versus location error in comparison of categorical maps," Photogrammetric engineering and remote sensing, vol. 66, no. 8, pp. 1011-1016, 2000.
54. [54] M. Rashmi and N. Lele, "Spatial modeling and validation of forest cover change in Kanakapura region using GEOMOD," Journal of the Indian Society of Remote Sensing, vol. 38, no. 1, pp. 45-54, 2010. [DOI:10.1007/s12524-010-0011-0]
55. [55] G. Chander, B. L. Markham, and D. L. Helder, "Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors," Remote sensing of environment, vol. 113, no. 5, pp. 893-903, 2009. [DOI:10.1016/j.rse.2009.01.007]
56. [56] J. A. Sobrino et al., "Land surface emissivity retrieval from different VNIR and TIR sensors," IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 2, pp. 316-327, 2008. [DOI:10.1109/TGRS.2007.904834]
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimi Firozjaei M, Kiavarz Mogaddam M, Alavi Panah S K. Monitoring and predicting spatial-temporal changes heat island in Babol city due to urban sprawl and land use changes. jgit 2017; 5 (3) :123-151
URL: http://jgit.kntu.ac.ir/article-1-519-fa.html

کریمی فیروزجائی محمد، کیاورز مجید، علوی پناه سیدکاظم. پایش و پیش‌بینی شدت جزیره حرارتی شهر بابل با توجه به گسترش شهری و تغییرات کاربری اراضی در بازه زمانی 1394-1364. مهندسی فناوری اطلاعات مکانی. 1396; 5 (3) :123-151

URL: http://jgit.kntu.ac.ir/article-1-519-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 5، شماره 3 - ( 9-1396 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 38 queries by YEKTAWEB 4645