[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 6، شماره 1 - ( 3-1397 ) ::
جلد 6 شماره 1 صفحات 15-43 برگشت به فهرست نسخه ها
الگوریتمی جدید و کارا برای جایابی و پوشش سه‌بعدی ربات‌های پرنده در فضای برداری
علی اصغر حیدری، فرید کریمی پور
دانشگاه تهران
چکیده:   (404 مشاهده)
مسئله جایابی حسگرها با بیشینه پوشش همواره به‌عنوان یکی از مراحل بنیادین توسعه زیرساخت‌های ارتباطی و مکانی موردتوجه پژوهشگران علوم مهندسی بوده است. در این پژوهش، به ارائه یک رویکرد کاملاً جدید برای جایابی رباتهای پرنده با بیشینه پوشش در محیط‌های سه‌بعدی برداری پرداخته می‌شود. بدین‌منظور، نخست، یک الگوریتم هندسی برای تشخیص نواحی تحت پوشش توسعه داده شده است. به‌منظور بیشینه‌سازی میزان پوشش حسگرها نیز از الگوریتم بهینه‌سازی چرخه آب بهره‌گیری شده است. سپس، به‌منظور پیشگیری از همگرایی زودرس به نقاط زیر بهینه و ارتقاء کارایی و توان جستجوی الگوریتم در حل مسئله، به طراحی و توسعه یک الگوریتم بهبودیافته چرخه آب با پارامترهای کمتر و عملگرهای دینامیک پرداخته شده است. با در نظر گرفتن چندین سناریو با قیود مکانی مختلف، کارایی الگوریتم پیشنهادی در مقایسه با سایر روش‌ها از منظر میزان استحکام، زمان اجرا، میانگین و بهترین مقادیر پوشش، انحراف از معیار، سرعت همگرایی و آزمون آماری ویلکاکسون بررسی گردید. ارزیابی و تحلیل نتایج نشان‌دهنده عملکرد برتر رویکرد پیشنهادی با نرخ موفقیت 73 درصد و سطح پوشش 80 درصد در یک فضای سهبعدی برداری است.
واژه‌های کلیدی: ربات پرنده، جایابی، پوشش، فضای برداری، بهینه‌سازی، الگوریتم چرخه آب
متن کامل [PDF 2604 kb]   (211 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سیستمهای اطلاعات مکانی (عمومی)
دریافت: ۱۳۹۵/۶/۳۱ | پذیرش: ۱۳۹۶/۶/۴ | انتشار: ۱۳۹۷/۳/۳۱
فهرست منابع
1. [1] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme, "Autonomous deployment and repair of a sensor network using an unmanned aerial vehicle," in Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE International Conference on, 2004, pp. 3602-3608. [DOI:10.1109/ROBOT.2004.1308811]
2. [2] N. R. Ahmed, J. Cortes, and S. Martinez, "Distributed Control and Estimation of Robotic Vehicle Networks: An Overview of Part 2," IEEE Control Systems, vol. 36, pp. 18-21, 2016. [DOI:10.1109/MCS.2016.2558398]
3. [3] J. Haugen and L. Imsland, "Monitoring moving objects using aerial mobile sensors," IEEE Transactions on Control Systems Technology, vol. 24, pp. 475-486, 2016.
4. [4] T. F. Villa, F. Gonzalez, B. Miljievic, Z. D. Ristovski, and L. Morawska, "An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospectives," Sensors, vol. 16, p. 1072, 2016. [DOI:10.3390/s16071072]
5. [5] S. Hayat, E. Yanmaz, and R. Muzaffar, "Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint," IEEE Communications Surveys & Tutorials, vol. 18, pp. 2624-2661, 2016. [DOI:10.1109/COMST.2016.2560343]
6. [6] M. Saska, V. Vonásek, J. Chudoba, J. Thomas, G. Loianno, and V. Kumar, "Swarm distribution and deployment for cooperative surveillance by micro-aerial vehicles," Journal of Intelligent & Robotic Systems, pp. 1-24, 2016. [DOI:10.1007/s10846-016-0338-z]
7. [7] M. F. Mysorewala, D. O. Popa, and F. L. Lewis, "Multi-scale adaptive sampling with mobile agents for mapping of forest fires," Journal of Intelligent and Robotic Systems, vol. 54, pp. 535-565, 2009. [DOI:10.1007/s10846-008-9246-1]
8. [8] A. Pierson and M. Schwager, "Adaptive inter-robot trust for robust multi-robot sensor coverage," in Robotics Research, ed: Springer, 2016, pp. 167-183. [DOI:10.1007/978-3-319-28872-7_10]
9. [9] C. Y. Ma, D. K. Yau, N. K. Yip, N. S. Rao, and J. Chen, "Stochastic steepest descent optimization of multiple-objective mobile sensor coverage," IEEE Transactions on Vehicular Technology, vol. 61, pp. 1810-1822, 2012. [DOI:10.1109/TVT.2012.2189591]
10. [10] M. Rebai, H. Snoussi, F. Hnaien, and L. Khoukhi, "Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks," Computers & Operations Research, vol. 59, pp. 11-21, 2015. [DOI:10.1016/j.cor.2014.11.002]
11. [11] M. Vecchio and R. López-Valcarce, "Improving area coverage of wireless sensor networks via controllable mobile nodes: A greedy approach," Journal of Network and Computer Applications, vol. 48, pp. 1-13, 2015. [DOI:10.1016/j.jnca.2014.10.007]
12. [12] S. N. Alam and Z. J. Haas, "Coverage and connectivity in three-dimensional networks with random node deployment," Ad Hoc Networks, vol. 34, pp. 157-169, 2015. [DOI:10.1016/j.adhoc.2014.09.008]
13. [13] F. Li, J. Luo, S. Xin, and Y. He, "Autonomous deployment of wireless sensor networks for optimal coverage with directional sensing model," Computer Networks, vol. 108, pp. 120-132, 2016. [DOI:10.1016/j.comnet.2016.08.007]
14. [14] C. Zhu, C. Zheng, L. Shu, and G. Han, "A survey on coverage and connectivity issues in wireless sensor networks," Journal of Network and Computer Applications, vol. 35, pp. 619-632, 2012. [DOI:10.1016/j.jnca.2011.11.016]
15. [15] C. Ozturk, D. Karaboga, and B. Gorkemli, "Probabilistic dynamic deployment of wireless sensor networks by artificial bee colony algorithm," Sensors, vol. 11, pp. 6056-6065, 2011. [DOI:10.3390/s110606056]
16. [16] X. Wang, S. Wang, and J.-J. Ma, "An improved co-evolutionary particle swarm optimization for wireless sensor networks with dynamic deployment," Sensors, vol. 7, pp. 354-370, 2007. [DOI:10.3390/s7030354]
17. [17] Y. Yoon and Y.-H. Kim, "An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks," IEEE Transactions on Cybernetics, vol. 43, pp. 1473-1483, 2013. [DOI:10.1109/TCYB.2013.2250955]
18. [18] R. Özdağ and A. Karcı, "Probabilistic dynamic distribution of wireless sensor networks with improved distribution method based on electromagnetism-like algorithm," Measurement, vol. 79, pp. 66-76, 2016. [DOI:10.1016/j.measurement.2015.09.056]
19. [19] H. Zhu and Y. Shi, "Brain storm optimization algorithm for full area coverage of wireless sensor networks," in 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI), 2016, pp. 14-20. [DOI:10.1109/ICACI.2016.7449796]
20. [20] G. Wang, L. Guo, H. Duan, L. Liu, and H. Wang, "Dynamic deployment of wireless sensor networks by biogeography based optimization algorithm," Journal of Sensor and Actuator Networks, vol. 1, pp. 86-96, 2012. [DOI:10.3390/jsan1020086]
21. [21] R. V. Kulkarni and G. K. Venayagamoorthy, "Bio-inspired algorithms for autonomous deployment and localization of sensor nodes," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 40, pp. 663-675, 2010. [DOI:10.1109/TSMCC.2010.2049649]
22. [22] C.-W. Tsai, T.-P. Hong, and G.-N. Shiu, "Metaheuristics for the Lifetime of WSN: A Review," IEEE Sensors Journal, vol. 16, pp. 2812-2831, 2016. [DOI:10.1109/JSEN.2016.2523061]
23. [23] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh, "Monitoring volcanic eruptions with a wireless sensor network," in Proceeedings of the Second European Workshop on Wireless Sensor Networks, 2005., 2005, pp. 108-120. [DOI:10.1109/EWSN.2005.1462003]
24. [24] M. Argany, M. A. Mostafavi, V. Akbarzadeh, C. Gagné, and R. Yaagoubi, "Impact of the quality of spatial 3D city models on sensor networks placement optimization," Geomatica, vol. 66, pp. 291-305, 2012. [DOI:10.5623/cig2012-055]
25. [25] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, "Coverage control for mobile sensing networks," in Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on, 2002, pp. 1327-1332. [DOI:10.1109/ROBOT.2002.1014727]
26. [26] M. Argany, M. A. Mostafavi, and C. Gagné, "Context-Aware Local Optimization of Sensor Network Deployment," Journal of Sensor and Actuator Networks, vol. 4, pp. 160-188, 2015. [DOI:10.3390/jsan4030160]
27. [27] S. Temel, N. Unaldi, and O. Kaynak, "On deployment of wireless sensors on 3-D terrains to maximize sensing coverage by utilizing cat swarm optimization with wavelet transform," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 44, pp. 111-120, 2014. [DOI:10.1109/TSMCC.2013.2258336]
28. [28] R. Shorey, A. Ananda, M. C. Chan, and W. T. Ooi, Mobile, wireless, and sensor networks: technology, applications, and future directions: John Wiley & Sons, 2006.
29. [29] M. A. Guvensan and A. G. Yavuz, "On coverage issues in directional sensor networks: A survey," Ad Hoc Networks, vol. 9, pp. 1238-1255, 2011. [DOI:10.1016/j.adhoc.2011.02.003]
30. [30] H. Ma, X. Zhang, and A. Ming, "A coverage-enhancing method for 3d directional sensor networks," in INFOCOM 2009, IEEE, 2009, pp. 2791-2795.
31. [31] G. Wang, G. Cao, and T. F. La Porta, "Movement-assisted sensor deployment," IEEE Transactions on Mobile Computing, vol. 5, pp. 640-652, 2006. [DOI:10.1109/TMC.2006.80]
32. [32] Y. Wang and G. Cao, "On full-view coverage in camera sensor networks," in INFOCOM, 2011 Proceedings IEEE, 2011, pp. 1781-1789.
33. [33] v. Akbarzadeh, C. Gagn'e, M. Parizeau, and M. A. Mostafavi, "Black-box Optimization of Sensor Placement with Elevation Maps and Probabilistic Sensing Models," presented at the International Symposium on Robotic and Sensors Environment, ROSE, 2011.
34. [34] M. Argany, M. A. Mostafavi, F. Karimipour, and C. Gagné, "A GIS Based Wireless Sensor Network Coverage Estimation and Optimization: A Voronoi Approach," A Voronoi Approach. Transacton on Computational Sciences Journal, vol. 14, pp. 151-172, 2011. [DOI:10.1007/978-3-642-25249-5_6]
35. [35] M. Argany, M. A. Mostafavi, V. Akbarzadeh, C. Gagné, and R. Yaagoubi, "Impact of the quality of spatial 3D city models on sensor networks placement optimization," GEOMATICA, vol. 66, p. 291—305, 2012. [DOI:10.5623/cig2012-055]
36. [36] A. Hossain, P. Biswas, and S. Chakrabarti, "Sensing models and its impact on network coverage in wireless sensor network," in 2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems, 2008, pp. 1-5. [DOI:10.1109/ICIINFS.2008.4798455]
37. [37] X. Chen, K. Makki, K. Yen, and N. Pissinou, "Sensor network security: a survey," IEEE Communications Surveys & Tutorials, vol. 11, pp. 52-73, 2009. [DOI:10.1109/SURV.2009.090205]
38. [38] J. C. Lee, V. C. Leung, K. H. Wong, J. Cao, and H. C. Chan, "Key management issues in wireless sensor networks: current proposals and future developments," IEEE Wireless Communications, vol. 14, pp. 76-84, 2007. [DOI:10.1109/MWC.2007.4396946]
39. [39] V. Akbarzadeh, C. Gagné, M. Parizeau, M. Argany, and M. A. Mostafavi, "Probabilistic sensing model for sensor placement optimization based on line-of-sight coverage," IEEE Transactions on Instrumentation and Measurement, vol. 62, pp. 293-303, 2013. [DOI:10.1109/TIM.2012.2214952]
40. [40] H. Eskandar, A. Sadollah, A. Bahreininejad, and M. Hamdi, "Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems," Computers & Structures, vol. 110, pp. 151-166, 2012. [DOI:10.1016/j.compstruc.2012.07.010]
41. [41] J. F. Blinn and M. E. Newell, "Texture and reflection in computer generated images," Communications of the ACM, vol. 19, pp. 542-547, 1976. [DOI:10.1145/360349.360353]
42. [42] D. Hoiem, A. A. Efros, and M. Hebert, "Putting objects in perspective," International Journal of Computer Vision, vol. 80, pp. 3-15, 2008. [DOI:10.1007/s11263-008-0137-5]
43. [43] J. D. Foley and A. Van Dam, Fundamentals of interactive computer graphics vol. 2: Addison-Wesley Reading, MA, 1982.
44. [44] M. Leonov, "Polyboolean library," Polyboolean library, 2004.
45. [45] B. Naylor, "Binary space partitioning trees as an alternative representation of polytopes," Computer-Aided Design, vol. 22, pp. 250-252, 1990. [DOI:10.1016/0010-4485(90)90055-H]
46. [46] E. Besada-Portas, L. de la Torre, M. Jesus, and B. de Andrés-Toro, "Evolutionary trajectory planner for multiple UAVs in realistic scenarios," IEEE Transactions on Robotics, vol. 26, pp. 619-634, 2010. [DOI:10.1109/TRO.2010.2048610]
47. [47] A. A. Heidari, R. A. Abbaspour, and A. R. Jordehi, "Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems," Applied Soft Computing, vol. 57, pp. 657–671, 2017. [DOI:10.1016/j.asoc.2017.04.048]
48. [48] A. Sadollah, H. Eskandar, A. Bahreininejad, and J. H. Kim, "Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems," Applied Soft Computing, vol. 30, pp. 58-71, 2015. [DOI:10.1016/j.asoc.2015.01.050]
49. [49] A. Sadollah, H. Eskandar, A. Bahreininejad, and J. H. Kim, "Water cycle algorithm for solving multi-objective optimization problems," Soft Computing, vol. 19, pp. 2587-2603, 2015. [DOI:10.1007/s00500-014-1424-4]
50. [50] A. A. Heidari, R. A. Abbaspour, and A. R. Jordehi, "An efficient chaotic water cycle algorithm for optimization tasks," Neural Computing and Applications, vol. 28, pp. 57–85, 2017. [DOI:10.1007/s00521-015-2037-2]
51. [51] Y. Shi and R. C. Eberhart, "Empirical study of particle swarm optimization," in Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, 1999. [DOI:10.1109/CEC.1999.785511]
52. [52] M. Mahdavi, M. Fesanghary, and E. Damangir, "An improved harmony search algorithm for solving optimization problems," Applied mathematics and computation, vol. 188, pp. 1567-1579, 2007. [DOI:10.1016/j.amc.2006.11.033]
53. [53] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey wolf optimizer," Advances in Engineering Software, vol. 69, pp. 46-61, 2014. [DOI:10.1016/j.advengsoft.2013.12.007]
54. [54] A. A. Heidari and M. R. Delavar, "A Modified Genetic Algorithm for Finding Fuzzy Shortest Paths in Uncertain Networks," Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. XLI-B2, pp. 299-304, 2016.
55. [55] A. A. Heidari, S. S. Mirvahabi, and S. Homayouni, "An Effective Hybrid Support Vector Regression with Chaos-Embedded Biogeography-Based Optimization Strategy for Prediction of Earthquake-Triggered Slope Deformations," Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. XL-1/W5, pp. 301-305, 2015. [DOI:10.5194/isprsarchives-XL-1-W5-301-2015]
56. [56] M. A. Ardeh, M. B. Menhaj, E. Esmailian, and H. Zandhessami, "EXPLICA: An Explorative Imperialist Competitive Algorithm based on the notion of Explorers with an expansive retention policy," Applied Soft Computing, vol. 54, pp. 74-92, 2017. [DOI:10.1016/j.asoc.2017.01.025]
57. [57] T. Niknam, E. T. Fard, N. Pourjafarian, and A. Rousta, "An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering," Engineering Applications of Artificial Intelligence, vol. 24, pp. 306-317, 2011. [DOI:10.1016/j.engappai.2010.10.001]
58. [58] A. A. Heidari and P. Pahlavani, "An efficient modified grey wolf optimizer with Lévy flight for optimization tasks," Applied Soft Computing, vol. 60, pp. 115-134, 2017. [DOI:10.1016/j.asoc.2017.06.044]
59. [59] G. Taguchi, Introduction to quality engineering: designing quality into products and processes, 1986.
60. [60] X. Wang, S. Wang, and D. Bi, "Dynamic sensor nodes selection strategy for wireless sensor networks," in Communications and Information Technologies, 2007. ISCIT'07. International Symposium on, 2007, pp. 1137-1142.
61. [61] X. Bai, S. Li, C. Jiang, and Z. Gao, "Coverage optimization in wireless mobile sensor networks," in Wireless Communications, Networking and Mobile Computing, 2009. WiCom'09. 5th International Conference on, 2009, pp. 1-4. [DOI:10.1109/WICOM.2009.5301207]
62. [62] K. Hammond and G. Michaelson, Research directions in parallel functional programming: Springer Science & Business Media, 2012.
63. [63] J. Derrac, S. García, D. Molina, and F. Herrera, "A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms," Swarm and Evolutionary Computation, vol. 1, pp. 3-18, 2011. [DOI:10.1016/j.swevo.2011.02.002]
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heidari A A, Karimipour F. A Novel and Efficient Algorithm for three-dimensional Coverage and Deployment of Aerial Robots in Vector Spaces. jgit. 2018; 6 (1) :15-43
URL: http://jgit.kntu.ac.ir/article-1-561-fa.html

حیدری علی اصغر، کریمی پور فرید. الگوریتمی جدید و کارا برای جایابی و پوشش سه‌بعدی ربات‌های پرنده در فضای برداری. مهندسی فناوری اطلاعات مکانی. 1397; 6 (1) :15-43

URL: http://jgit.kntu.ac.ir/article-1-561-fa.html



دوره 6، شماره 1 - ( 3-1397 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 3781