[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 6، شماره 2 - ( 6-1397 ) ::
جلد 6 شماره 2 صفحات 43-64 برگشت به فهرست نسخه ها
ارزیابی قابلیت رگرسیون وزنی جغرافیایی در بهبود پیش‌بینی رشد اراضی شهری با استفاده از سلول‌های خودکار
بابک میرباقری ، عباس علیمحمدی
دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده:   (193 مشاهده)
رگرسیون وزنی جغرافیایی منطقی (GWLR) نسخه محلی مدل رگرسیون منطقی (LR) است که در هر مکان رابطه متفاوتی را بین متغیرهای وابسته و مستقل برآورد می‌کند. در تحقیق حاضر از مدل GWLR در توسعه قوانین تبدیل سلولهای خودکار(CA) استفاده و کارایی آن در پیش‌بینی رشد شهری در مقابل مدل CA مبتنی بر رگرسیون منطقی (Logistic-CA) مورد ارزیابی  قرار گرفت. همچنین پارامتری تحت عنوان ضریب رشد حاشیه ای برای تعیین توازن بهینه میان فرایندهای رشد حاشیه ای و رشد خود انگیخته که از جمله فرایندهای مهم در رشد اراضی شهری محسوب می‌شوند، تعریف گردید. جهت ارزیابی دقت مدل نیز از آماره کاپای فازی در کنار ضریب معمول کاپا استفاده شد. مدل پیشنهادی در تحقیق حاضر جهت پیش بینی توسعه بخشی از اراضی شهری واقع در جنوب غرب منطقه کلانشهری تهران برای دوره زمانی 1391-1383 اجرا گردید. نتایج این مطالعه نشان داد استفاده از مدل GWLR در تعریف قوانین تبدیل CA منجر به افزایش قابل توجه دقت پیش بینی رشد شهری در مقایسه با مدل Logistic-CA می گردد. دقت پیش بینی مدل توسعه داده شده در تحقیق حاضر بر حسب ضریب کاپا برابر 54/0 می باشد که افزایش دقتی معادل 24/0 را در مقایسه با مدل Logistic-CA نشان می دهد. همچنین دقت مدل پیشنهادی بر اساس شاخص کاپای فازی با در نظر گرفتن فواصل50 و 100 متری برای تابع نمایی افت فاصله، به 69/0 و 76/0 می‌رسد.
واژه‌های کلیدی: سلول‌های خودکار، رگرسیون وزنی جغرافیایی، رگرسیون منطقی
متن کامل [PDF 1810 kb]   (96 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سیستمهای اطلاعات مکانی (عمومی)
دریافت: ۱۳۹۵/۳/۲۵ | پذیرش: ۱۳۹۵/۱۱/۱۳ | انتشار: ۱۳۹۷/۶/۳۱
فهرست منابع
1. [1] R. White, I. Uljee, and G. Engelen, "Integrated modelling of population, employment and land-use change with a multiple activity-based variable grid cellular automaton", International Journal of Geographical Information Science, Vol.26, pp. 1251-1280, 2012. [DOI:10.1080/13658816.2011.635146]
2. [2] H. Zhang, Y. Zeng, L. Bian, and X. Yu, "Modelling urban expansion using a multi agent-based model in the city of Changsha", Journal of Geographical Sciences, Vol.20, pp. 540-556, 2010. [DOI:10.1007/s11442-010-0540-z]
3. [3] X. Li, and A. G-O Yeh, "Modelling sustainable urban development by the integration of constrained cellular automata and GIS", International Journal of Geographical Information Science, Vol.14, pp. 131-152, 2000. [DOI:10.1080/136588100240886]
4. [4] R. M. Itami, "Simulating spatial dynamics: cellular automata theory", Landscape and Urban Planning, Vol. 30, pp. 27-47, 1994. [DOI:10.1016/0169-2046(94)90065-5]
5. [5] W. Tobler, "Cellular geography", Philosophy in geography, Vol.9, pp. 379-386, 1979.
6. [6] R. White, and G. Engelen, "Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns", Environment and Planning A, Vol.25, pp. 1175-1175, 1993. [DOI:10.1068/a251175]
7. [7] R. White, G. Engelen, and I. Uljee, "The use of constrained cellular automata for high-resolution modelling ofurban land-use dynamics", Environment and Planning B, Vol.24, pp. 323-344, 1997. [DOI:10.1068/b240323]
8. [8] G. Engelen, S. Geertman, P. Smits, and C. Wessels, "Dynamic GIS and strategic physical planning support: a practical application", in: Stillwell S, Geertman S, Openshaw S (Eds.) Geographical Information and Planning. Berlin, Springer-Verlag, 1999. [DOI:10.1007/978-3-662-03954-0_5]
9. [9] K. C. Clarke, S. Hoppen, and L. Gaydos, "A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area", Environment and planning B, Vol.24, pp.247-261, 1997. [DOI:10.1068/b240247]
10. [10] F. Wu, "Calibration of stochastic cellular automata: the application to rural-urban land conversions", International Journal of Geographical Information Science, Vol.16, pp. 795-818, 2002. [65] P. D. Allison, Logistic regression using SAS®: theory and application, Second Edition. Cary, NC, SAS Publishing, 2012.
11. [11] X. Li, and A. G-O Yeh, "Calibration of cellular automata by using neural networks for the simulation of complex urban systems", Environment and Planning A, Vol.33, pp. 1445-1462, 2001. [DOI:10.1068/a33210]
12. [12] Q. Yang, X. Li, and X. Shi, "Cellular automata for simulating land use changes based on support vector machines", Computers & geosciences, Vol.34, pp. 592-602, 2008. [DOI:10.1016/j.cageo.2007.08.003]
13. [13] X. Liu, X. Li, X. Shi, S. Wu, and T. Liu, "Simulating complex urban development using kernel-based non-linear cellular automata", Ecological Modelling, Vol.211, pp. 169-181, 2008. [DOI:10.1016/j.ecolmodel.2007.08.024]
14. [14] K. Al-Ahmadi, L. See, A. Heppenstall, and j. Hogg, "Calibration of a fuzzy cellular automata model of urban dynamics in Saudi Arabia", Ecological Complexity, Vol.6, pp. 80-101, 2009. [DOI:10.1016/j.ecocom.2008.09.004]
15. [15] Y. Feng, Y. Liu, X. Tong, M. Liu, and S. Deng, "Modeling dynamic urban growth using cellular automata and particle swarm optimization rules", Landscape and Urban Planning, Vol.102, pp. 188-196, 2011. [DOI:10.1016/j.landurbplan.2011.04.004]
16. [16] Y. Feng, and Y. Liu, "A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing", International Journal of Geographical Information Science, Vol.27, pp. 449-466, 2013. [DOI:10.1080/13658816.2012.695377]
17. [17] H. Couclelis, "Cellular worlds: a framework for modeling micro-macro dynamics", Environment and Planning A, Vol.17, pp. 585-596, 1985. [DOI:10.1068/a170585]
18. [18] H. Couclelis, "From cellular automata to urban models: new principles for model development and implementation", Environment and Planning B, Vol.24, pp. 165-174, 1997. [DOI:10.1068/b240165]
19. [19] J. Luo, and Y. H. Wei, "Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing", Landscape and Urban Planning, Vol.91, pp. 51-64, 2009. [DOI:10.1016/j.landurbplan.2008.11.010]
20. [20] R. I. McDonald, and D. L. Urban, "Spatially varying rules of landscape change: lessons from a case study. Landscape and Urban Planning", Vol.74, pp. 7-20, 2006. [DOI:10.1016/j.landurbplan.2004.08.005]
21. [21] X. Li, Q. Yang, and X. Liu, "Discovering and evaluating urban signatures for simulating compact development using cellular automata", Landscape and Urban Planning, Vol.86, pp. 177-186, 2008. [DOI:10.1016/j.landurbplan.2008.02.005]
22. [22] R. White, and G. Engelen, "High-resolution integrated modelling of the spatial dynamics of urban and regional systems", Computers, Environment and Urban Systems, Vol.24, pp. 383-400, 2000. [DOI:10.1016/S0198-9715(00)00012-0]
23. [23] H. Wang, S. He, X. Liu, L. Dai, P. Pan, S. Hong, and W. Zhang, "Simulating urban expansion using a cloud-based cellular automata model: A case study of Jiangxia, Wuhan, China", Landscape and Urban Planning, Vol.110, pp. 99-112, 2013. [DOI:10.1016/j.landurbplan.2012.10.016]
24. [24] I. Santé, A. M. García, D. Miranda, and R. Crecente, "Cellular automata models for the simulation of real-world urban processes: A review and analysis", Landscape and Urban Planning, Vol.96, pp. 108-122, 2010. [DOI:10.1016/j.landurbplan.2010.03.001]
25. [25] J. Cheng, and I. Masser, "Understanding spatial and temporal processes of urban growth: cellular automata modelling", Environment and Planning B, Vol.31, pp. 167-194, 2002. [DOI:10.1068/b2975]
26. [26] X. Li, and X. Liu, "An extended cellular automaton using case‐based reasoning for simulating urban development in a large complex region", International Journal of Geographical Information Science, Vol.20, pp. 1109-1136, 2006. [DOI:10.1080/13658810600816870]
27. [27] S. Geertman, M. Hagoort, and H. Ottens, "Spatial‐temporal specific neighbourhood rules for cellular automata land‐use modelling", International Journal of Geographical Information Science, Vol.21, pp. 547-568, 2007. [DOI:10.1080/13658810601064892]
28. [28] X. Li, X. Liu, and P. Gong, "Integrating ensemble-urban cellular automata model with an uncertainty map to improve the performance of a single model", International Journal of Geographical Information Science, Vol. 29, pp. 762-755, 2015. [DOI:10.1080/13658816.2014.997237]
29. [29] E. Foroutan, "Modeling Urban Growth using the integration of Cellular Automata, Fuzzy and Genetic algorithms ", MSc Thesis, School of Surveying and Geospatial Eng. at The University of Tehran, 2012.
30. [30] [30] Y.Chen, X. Li, X. Liu, & B. Ai., "Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy", International Journal of Geographical Information Science, Vol. 28(2), pp. 234-255, 2014. [DOI:10.1080/13658816.2013.831868]
31. [31] D. Z. Sui, and H. Zeng, "Modeling the dynamics of landscape structure in Asia's emerging desakota regions: a case study in Shenzhen", Landscape and Urban Planning, Vol.53, pp. 37-52, 2001. [DOI:10.1016/S0169-2046(00)00136-5]
32. [32] B. S. Soares-Filho, G. Coutinho Cerqueira, and C. Lopes Pennachin, "DINAMICA—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier", Ecological Modelling, Vol.154, pp. 217-235, 2002. [DOI:10.1016/S0304-3800(02)00059-5]
33. [33] F. Wu, "A parameterised urban cellular model combining spontaneous and self-organising growth", In: Innovation in GIS 7, London, Taylor & Francis, 2000.
34. [34] A. M. García, I. Santé, R. Crecente, and D. Miranda, "An analysis of the effect of the stochastic component of urban cellular automata models", Computers, Environment and Urban Systems, Vol.35, pp. 289-296, 2011. [DOI:10.1016/j.compenvurbsys.2010.11.001]
35. [35] A. J. Jokar Arsanjani, M. Helbich, W. Kainz, and A. Darvishi Bloorani, "Integration of logistic regression Markov chain and cellular automata models to simulate urban expansion", International Journal of Applied Earth Observation and Geoinformation, Vol.21, pp. 265-275, 2012. [DOI:10.1016/j.jag.2011.12.014]
36. [36] A. M. García, I. Santé, M. Boullón, and R. Crecente, "Calibration of an urban cellular automaton model by using statistical techniques and a genetic algorithm, Application to a small urban settlement of NW Spain", International Journal of Geographical Information Science, Vol.27, pp. 1593-1611, 2013. [DOI:10.1080/13658816.2012.762454]
37. [37] J. Liao, L. Tang, G. Shao, X. Su, D. Chen, & T. Xu, "Incorporation of extended neighborhood mechanisms and its impact on urban land-use cellular automata simulations", Environmental Modelling & Software, Vol. 75, pp. 163-175, 2016. [DOI:10.1016/j.envsoft.2015.10.014]
38. [38] A. M. García, I. Santé, M. Boullón, and R. Crecente, "A comparative analysis of cellular automata models for simulation of small urban areas in Galicia, NW Spain", Computers, Environment and Urban Systems, Vol.36, pp. 291-301, 2012. [DOI:10.1016/j.compenvurbsys.2012.01.001]
39. [39] J. Luo, and N. K. Kanala, "Modeling urban growth with geographically weighted multinomial logistic regression", InProceedings of the Paper presented at the Geoinformatics 2008 and Joint Conference on GIS and Built Environment: The Built Environment and Its Dynamics. Proceedings of SPIE 7144, 2008.
40. [40] X. Li, and A. G-O Yeh, "Data mining of cellular automata's transition rules", International Journal of Geographical Information Science, Vol.18, pp. 723-744, 2004. [DOI:10.1080/13658810410001705325]
41. [41] C. Brunsdon, A. S. Fotheringham, and M. E. Charlton, "Geographically weighted regression: a method for exploring spatial nonstationarity", Geographical Analysis, Vol.28, pp. 281-298, 1996. [DOI:10.1111/j.1538-4632.1996.tb00936.x]
42. [42] A. S. Fotheringham, M. E. Charlton, and C. Brunsdon, "Spatial variations in school performance: a local analysis using geographically weighted regression", Geographical and Environmental Modelling, Vol.5, pp. 43-66, 2001. [DOI:10.1080/13615930120032617]
43. [43] C. Brunsdon, J. McClatchey, and D. Unwin, "Spatial variations in the average rainfall–altitude relationship in Great Britain: an approach using geographically weighted regression", International Journal of Climatology, Vol21, pp. 455-466, 2001. [DOI:10.1002/joc.614]
44. [44] M. Cahill, and G. Mulligan "Using geographically weighted regression to explore local crime patterns", Social Science Computer Review, Vol.25, pp. 174-193, 2007. [DOI:10.1177/0894439307298925]
45. [45] J. Gao, and S. Li, "Detecting spatially non-stationary and scale-dependent relationships between urban landscape fragmentation and related factors using geographically weighted regression", Applied Geography, Vol.31, pp. 292-302, 2011. [DOI:10.1016/j.apgeog.2010.06.003]
46. [46] D. Ivajnšič, M. Kaligarič, and I. Žiberna, "Geographically weighted regression of the urban heat island of a small city", Applied Geography, Vol.53, pp. 341-353, 2014. [DOI:10.1016/j.apgeog.2014.07.001]
47. [47] A. S. Fotheringham, C. Brunsdon, and M. Charlton, Geographically weighted regression: the analysis of spatially varying relationships, New York, John Wiley & Sons, 2002.
48. [48] M. J. De Smith, M. F. Goodchild, and P. Longley, Geospatial analysis: a comprehensive guide to principles techniques and software tools, Leicester, Troubador Publishing Ltd, 2007.
49. [49] T. Nakaya, "Geographically weighted generalised linear modelling Geocomputation: A Practical Primer. London", Sage Publication, pp. 217-220, 2015.
50. [50] H. Shafizadeh-Moghadam, and M. Helbich, "Spatiotemporal variability of urban growth factors: A global and local perspective on the megacity of Mumbai", International Journal of Applied Earth Observation and Geoinformation, Vol.35, pp. 187-198, 2015. [DOI:10.1016/j.jag.2014.08.013]
51. [51] [M. Ghamami, "Urban agglomeration of Tehran and around cities", Center of studies and researches of Iran's architecture and urban planning, Ministry of Roads and Urban development, 2000 (Persian).
52. [52] A. Nazarian, "Urban sprawl of Tehran city and emergence of satellite towns", Journal of Geographical Researches, Vol.20, pp. 97-139, 1991 (Persian).
53. [53] A. Pourahmad, F. Seifoddini, and Z. Parnoon, "Migration and land use change in Eslamshahr city", Journal of Geographical Studies of Arid Regions, Vol. 2(5), pp. 131-150, 2011 (Persian).
54. [54] M. Rezvani, "Analysis of city and villages relationships patterns in rural areas of Tehran suburbs", Journal of Geographical Researches, Vol.43, pp. 81-94, 2002 (Persian).
55. [55] N. Ghasemi, and V. Mohammadi, "Eslamshahr town environmental-legal problems' Evaluation", Journal of Environmental Science and Technology, Vol. 16(4), pp. 147-163, 2015 (Persian).
56. [56] J. Tavakolinia, Zh. Sajjadi, and K. Shamspuya, "Sprawl of population and activities, Case study: Eslamshahr County", Journal of Geography, Vol.39, pp. 120-136, 2013 (Persian).
57. [57] G. Mortezaian Abkenar, H. Ghasemi Movaghar, and S. M. Sajjadi, Assimilation of Tehran province demographic information (1996-2011) based on the state devisions of 2011, Statistics and information office, General Governor of Tehran province, 2012 (Persian).
58. [58] I. Gollini, B. Lu, M. Charlton, C. Brunsdon, and P. Harris, "GWmodel: An R package for exploring spatial heterogeneity using geographically weighted models", Journal of Statistical Software, Vol.63, pp. 1–50, 2013.
59. [59] S. Chatterjee, and A. S. Hadi, Regression analysis by example, John Wiley & Sons, 2015.
60. [60] C. Xu, M. Liu, C. Zhang, S. An, W. Yu, and J. M. Chen, "The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China", Landscape ecology, Vol.22, pp. 925-937, 2007. [DOI:10.1007/s10980-007-9079-5]
61. [61] R. G. Congalton "A review of assessing the accuracy of classifications of remotely sensed data", Remote Sensing of Environment, Vol.37, pp. 35-46, 1991. [DOI:10.1016/0034-4257(91)90048-B]
62. [62] A. Hagen‐Zanker, "An improved Fuzzy Kappa statistic that accounts for spatial autocorrelation", International Journal of Geographical Information Science, Vol. 23(1), pp. 61-73, 2009. [DOI:10.1080/13658810802570317]
63. [63] A. Hagen-Zanker, "Fuzzy set approach to assessing similarity of categorical maps", International Journal of Geographical Information Science, Vol. 17(3), pp. 235-249, 2003. [DOI:10.1080/13658810210157822]
64. [64] H.Visser, and T. De Nijs, "The map comparison kit", Environmental Modelling & Software, Vol. 21, pp. 346-358, 2006. [DOI:10.1016/j.envsoft.2004.11.013]
65. [65] P. D. Allison, Logistic regression using SAS®: theory and application, Second Edition. Cary, NC, SASPublishing, 2012.
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirbagheri B, Alimohammadi A. Evaluating the Capability of Geographically Weighted Regression in Improvement of Urban Growth Simulation Performance Using Cellular Automata . jgit. 2018; 6 (2) :43-64
URL: http://jgit.kntu.ac.ir/article-1-588-fa.html

میرباقری بابک، علیمحمدی عباس. ارزیابی قابلیت رگرسیون وزنی جغرافیایی در بهبود پیش‌بینی رشد اراضی شهری با استفاده از سلول‌های خودکار. مهندسی فناوری اطلاعات مکانی. 1397; 6 (2) :43-64

URL: http://jgit.kntu.ac.ir/article-1-588-fa.html



دوره 6، شماره 2 - ( 6-1397 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 3792