[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
:: دوره 6، شماره 2 - ( 6-1397 ) ::
جلد 6 شماره 2 صفحات 105-124 برگشت به فهرست نسخه ها
ارزیابی الگوریتم‌های بهینه‌سازی در تناظریابی داده‌های مکانی چندمقیاسی مبتنی بر ویژگی‌های هندسی
علیرضا چهرقان، رحیم علی عباسپور
دانشگاه تهران
چکیده:   (186 مشاهده)
شناسایی عوارض با ماهیّت یکسان در مجموعه دادههای مختلف تحت عنوان تناظریابی عوارض شناخته میشود. تناظریابی کاربردهای مستقیم و غیر مستقیم بسیاری نظیر تلفیق، ارزیابی کیفیّت، به روز رسانی دادهها و انجام آنالیزهای چندمقیاسی دارد. از این رو در این تحقیق راهکاری نوین جهت تناظریابی عوارض ارائه می‌گردد که ضمن در نظر گرفتن تنها معیارهای هندسی (خصوصیات هندسی و توپولوژیکی) استخراج شده از عوارض، هرگونه وابستگی اولیه به پارامترهای تجربی مرسوم نظیر حد آستانه درجه شباهت مکانی، فاصله بافر و وزن معیارها حذف و تناظریابی در مجموعه دادههای مختلف انجام میگیرد. در رویکرد پیشنهادی تمامی روابط یک به هیچ، هیچ به یک، یک به یک، یک به چند، چند به یک و چند به چند در نظر گرفته میشود. همچنین در این تحقیق کارایی الگوریتمهای ژنتیک، توده ذرات و جستجوی غذای زنبور عسل برای تناظریابی عوارض خطی در مجموعه داده‌های مختلف با استفاده از بهینهسازی معیارهای هندسی مورد بررسی قرار می‌گیرد. برای ارزیابی کارایی رویکرد پیشنهادی از سه مجموعه داده در مقیاسها و منابع مختلف استفاده میگردد. نتایج نشان داد که چارچوب پیشنهادی به خوبی توانایی شناسایی عوارض متناظر در مجموعه داده‌های مختلف را دارا می‌باشد، همچنین نتایج نشان داد که الگوریتم ژنتیک در مقایسه با دو روش دیگر دارای کارایی بالاتری برای بهینهسازی پارامترهای موجود در تناظریابی عوارض خطی میباشد.
واژه‌های کلیدی: تناظریابی عوارض خطی، معیارهای هندسی، روش‌های بهینه‌سازی، آنالیز حساسیّت، الگوریتم ژنتیک
متن کامل [PDF 1902 kb]   (88 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سیستمهای اطلاعات مکانی (عمومی)
دریافت: ۱۳۹۵/۱۲/۸ | پذیرش: ۱۳۹۶/۷/۲ | انتشار: ۱۳۹۷/۶/۳۱
فهرست منابع
1. [1] E. Xavier, F. J. Ariza-López, and M. A. Ure-a-Cámara, "A Survey of Measures and Methods for Matching Geospatial Vector Datasets," ACM Computing Surveys (CSUR), vol. 49, pp. 1-34, 2016. [DOI:10.1145/2963147]
2. [2] L. Li and M. F. Goodchild, "An optimisation model for linear feature matching in geographical data conflation," International Journal of Image and Data Fusion, vol. 2, pp. 309-328, 2011/12/01 2011.
3. [3] A. Samal, S. Seth, and K. Cueto "A feature-based approach to conflation of geospatial sources," International Journal of Geographical Information Science, vol. 18, pp. 459-489, 2004. [DOI:10.1080/13658810410001658076]
4. [4] X. Tong, D. Liang, and Y. Jin, "A linear road object matching method for conflation based on optimization and logistic regression," International Journal of Geographical Information Science, vol. 28, pp. 824-846, 2014. [DOI:10.1080/13658816.2013.876501]
5. [5] B. Rosen and A. Saalfeld, "Match Criteria for Automatic Alignment," in Proceedings, Auto-Carto VII., 1985.
6. [6] A. Lupien and W. Moreland, "A general approach to map conflation," in Proceedings of 8th International Symposium on Computer Assisted Cartography (AutoCarto 8), 1987, pp. 630-639.
7. [7] A. Saalfeld, "Conflation Automated map compilation," International Journal of Geographical Information Systems, vol. 2, pp. 217-228, 1988/01/01 1988.
8. [8] R. M. Pendyala, Development of GIS-based conflation tools for data integration and matching: Florida Department of Transportation, 2002.
9. [9] D. Sheeren, S. Mustière, and J.-D. Zucker, "How to Integrate Heterogeneous Spatial Databases in a Consistent Way?," in Advances in Databases and Information Systems. vol. 3255, A. Benczúr, J. Demetrovics, and G. Gottlob, Eds., ed: Springer Berlin Heidelberg, 2004, pp. 364-378.
10. [10] E. Safra, Y. Kanza, Y. Sagiv, and Y. Doytsher, "Ad hoc matching of vectorial road networks," International Journal of Geographical Information Science, vol. 27, pp. 114-153, 2013. [DOI:10.1080/13658816.2012.667104]
11. [11] H. Stigmar, "Matching route data and topographic data in a real-time environment," in 10th Scandinavian Research Conference on Geographical Information Science, 2005, pp. 13-15.
12. [12] S. Mustière and T. Devogele, "Matching networks with different levels of detail," GeoInformatica, vol. 12, pp. 435-453, 2008. [DOI:10.1007/s10707-007-0040-1]
13. [13] S. Mustière, "Results of experiments on automated matching of networks at different scales," International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 36, pp. 92-100, 2006.
14. [14] A. J. Saalfeld, "Automated map conflation. Washington, DC: University of Maryland.," 1993.
15. [15] M. Zhang and L. Meng, "An iterative road-matching approach for the integration of postal data," Computers, Environment and Urban Systems, vol. 31, pp. 597-615, 2007. [DOI:10.1016/j.compenvurbsys.2007.08.008]
16. [16] V. Walter and D. Fritsch, "Matching spatial data sets: a statistical approach," International Journal of Geographical Information Science, vol. 13, pp. 445-473, 1999. [DOI:10.1080/136588199241157]
17. [17] M. Zhang, "Methods and implementations of road-network matching," Unpublished PhD Dissertation, Technical University of Munich, 2009.
18. [18] L. Li and M. Goodchild, "Automatically and accurately matching objects in geospatial datasets," in Proceedings of joint international conference on theory, data handling and modelling in geospatial information science, Hong Kong, 2010, pp. 98-103.
19. [19] M. Sester, G. Gösseln, and B. Kieler, "Identification and adjustment of corresponding objects in data sets of different origin," in 10th AGILE International Conference on Geographic Information Science 2007, 2007.
20. [20] M. Zhang and L. Meng, "Delimited stroke oriented algorithm-working principle and implementation for the matching of road networks," Geographic Information Sciences, vol. 14, pp. 44-53, 2008.
21. [21] B. Yang, Y. Zhang, and X. Luan, "A probabilistic relaxation approach for matching road networks," International Journal of Geographical Information Science, vol. 27, pp. 319-338, 2013. [DOI:10.1080/13658816.2012.683486]
22. [22] Y. Wang, Q. Du, F. Ren, and Z. Zhao, "A Propagating Update Method of Multi-Represented Vector Map Data Based on Spatial Objective Similarity and Unified Geographic Entity Code," in Cartography from Pole to Pole: Selected Contributions to the XXVIth International Conference of the ICA, Dresden 2013, M. Buchroithner, N. Prechtel, and D. Burghardt, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 139-153.
23. [23] Y. Wang, H. Lv, X. Chen, and Q. Du, "A PSO-Neural Network-Based Feature Matching Approach in Data Integration," in Cartography-Maps Connecting the World, ed: Springer, 2015, pp. 189-219.
24. [24] D. Min, L. Zhilin, and C. Xiaoyong, "Extended Hausdorff distance for spatial objects in GIS," International Journal of Geographical Information Science, vol. 21, pp. 459-475, 2007/04/01 2007.
25. [25] S. Yuan and C. Tao, "Development of conflation components," Proceedings of Geoinformatics, Ann Arbor, pp. 1-13, 1999.
26. [26] J. Hangouet, "Computation of the Hausdorff distance between plane vector polylines," in AUTOCARTO-CONFERENCE-, 1995, pp. 1-10.
27. [27] G. Touya, A. Coupé, J. L. Jollec, O. Dorie, and F. Fuchs, "Conflation optimized by least squares to maintain geographic shapes," ISPRS International Journal of Geo-Information, vol. 2, pp. 621-644, 2013. [DOI:10.3390/ijgi2030621]
28. [28] A. Mascret, T. Devogele, I. Le Berre, and A. Hénaff, Coastline matching process based on the discrete Fréchet distance: Springer, 2006.
29. [29] T. Devogele, "A new Merging process for data integration based on the discrete Fréchet distance," in Advances in spatial data handling, ed: Springer, 2002, pp. 167-181.
30. [30] X. Tong, W. Shi, and S. Deng, "A probability-based multi-measure feature matching method in map conflation," International Journal of Remote Sensing, vol. 30, pp. 5453-5472, 2009. [DOI:10.1080/01431160903130986]
31. [31] W. Song, J. M. Keller, T. L. Haithcoat, and C. H. Davis, "Relaxation‐Based Point Feature Matching for Vector Map Conflation," Transactions in GIS, vol. 15, pp. 43-60, 2011. [DOI:10.1111/j.1467-9671.2010.01243.x]
32. [32] A. Moosavi and A. A. Alesheikh, "Developing of Vector Matching Algorithm Considering Topologic Relations," Proceedings of Map Middle East, 2008.
33. [33] W. Cohen, P. Ravikumar, and S. Fienberg, "A comparison of string metrics for matching names and records," in Kdd workshop on data cleaning and object consolidation, 2003, pp. 73-78.
34. [34] M. A. Rodriguez and M. J. Egenhofer, "Comparing geospatial entity classes: an asymmetric and context-dependent similarity measure," International Journal of Geographical Information Science, vol. 18, pp. 229-256, 2004. [DOI:10.1080/13658810310001629592]
35. [35] A.-M. Olteanu-Raimond, S. Mustière, and A. Ruas, "Knowledge formalisation for vector data matching using Belief Theory," Journal of Spatial Information Science, vol. 10, pp. 21-46, 2015.
36. [36] H. Du, N. Alechina, M. Jackson, and G. Hart, "A Method for Matching Crowd‐sourced and Authoritative Geospatial Data," Transactions in GIS, 2016.
37. [37] C. Beeri, Y. Kanza, E. Safra, and Y. Sagiv, "Object fusion in geographic information systems," in Proceedings of the Thirtieth international conference on Very large data bases-Volume 30, 2004, pp. 816-827.
38. [38] C. Beeri, Y. Doytsher, Y. Kanza, E. Safra, and Y. Sagiv, "Finding corresponding objects when integrating several geo-spatial datasets," in Proceedings of the 13th annual ACM international workshop on Geographic information systems, 2005, pp. 87-96.
39. [39] M. Zhang, W. Shi, and L. Meng, "A generic matching algorithm for line networks of different resolutions," in Workshop of ICA Commission on Generalization and Multiple Representation Computering Faculty of A Coru-a University-Campus de Elvi-a, Spain, 2005.
40. [40] E. Safra, Y. Kanza, Y. Sagiv, and Y. Doytsher, "Efficient integration of road maps," in Proceedings of the 14th annual ACM international symposium on Advances in geographic information systems, 2006, pp. 59-66.
41. [41] J. O. Kim, K. Yu, J. Heo, and W. H. Lee, "A new method for matching objects in two different geospatial datasets based on the geographic context," Computers & Geosciences, vol. 36, pp. 1115-1122, 2010. [DOI:10.1016/j.cageo.2010.04.003]
42. [42] Y. Gabay and Y. Doytsher, "Automatic adjustment of line maps," in proceedings of GIS/LIS, 1994, pp. 332-340.
43. [43] P. Lüscher, D. Burghardt, and R. Weibel, "Matching road data of scales with an order of magnitude difference," in Proceeding of XXIII International Cartographic Conference, 2007.
44. [44] D. Mantel and U. Lipeck, "Matching cartographic objects in spatial databases," Int. Archives of Photogrammetry, Remote Sensing and Spatial Inf. Sciences, vol. 35, pp. 172-176, 2004.
45. [45] D. Demetriou, L. See, and J. Stillwell, "A spatial genetic algorithm for automating land partitioning," International Journal of Geographical Information Science, vol. 27, pp. 2391-2409, 2013/12/01 2013.
46. [46] N. N. Vinh and B. Le, "Incremental Spatial Clustering in Data Mining Using Genetic Algorithm and R-Tree," in Simulated Evolution and Learning: 9th International Conference, SEAL 2012, Hanoi, Vietnam, December 16-19, 2012. Proceedings, L. T. Bui, Y. S. Ong, N. X. Hoai, H. Ishibuchi, and P. N. Suganthan, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 270-279.
47. [47] G. N. Yücenur and N. Ç. Demirel, "A new geometric shape-based genetic clustering algorithm for the multi-depot vehicle routing problem," Expert Systems with Applications, vol. 38, pp. 11859-11865, 2011. [DOI:10.1016/j.eswa.2011.03.077]
48. [48] L. M. Li, K. D. Lu, G. Q. Zeng, L. Wu, and M. R. Chen, "A novel real-coded population-based extremal optimization algorithm with polynomial mutation: A non-parametric statistical study on continuous optimization problems," Neurocomputing, vol. 174, pp. 577-587, 2016. [DOI:10.1016/j.neucom.2015.09.075]
49. [49] S. V. Suggala and P. K. Bhattacharya, "Real coded genetic algorithm for optimization of pervaporation process parameters for removal of volatile organics from water," Industrial & engineering chemistry research, vol. 42, pp. 3118-3128, 2003. [DOI:10.1021/ie020183t]
50. [50] A. Blanco, M. Delgado, and M. Pegalajar, "A real-coded genetic algorithm for training recurrent neural networks," Neural networks, vol. 14, pp. 93-105, 2001. [DOI:10.1016/S0893-6080(00)00081-2]
51. [51] R. L. Haupt and S. E. Haupt, Practical genetic algorithms: John Wiley & Sons, 2004.
52. [52] J. Eshelman Larry and J. Schaffer David, "Real-coded Genetic Algorithms and Interval-Schemata," Foundations of Genetic Algorithms, vol. 2, pp. 187-202, 1992.
53. [53] W. A. Mackaness and G. A. Mackechnie, "Automating the detection and simplification of junctions in road networks," GeoInformatica, vol. 3, pp. 185-200, 1999. [DOI:10.1023/A:1009807927991]
54. [54] A. Chehreghan and R. Ali Abbaspour, "An assessment of spatial similarity degree between polylines on multi-scale, multi-source maps," Geocarto International, vol. 32, pp. 471-487, 2017. [DOI:10.1080/10106049.2016.1155659]
55. [55] Y. Wang, D. Chen, Z. Zhao, F. Ren, and Q. Du, "A Back-Propagation Neural Network-Based Approach for Multi-Represented Feature Matching in Update Propagation," Transactions in GIS, vol. 19, pp. 964-993, 2015. [DOI:10.1111/tgis.12138]
56. [56] H. Yan and J. Li, Spatial Similarity Relations in Multi-scale Map Spaces: Springer, 2014.
57. [57] D. L. Anderson, D. P. Ames, and P. Yang, "Quantitative Methods for Comparing Different Polyline Stream Network Models," Journal of Geographic Information System, vol. 6, pp. 88-98, 2014. [DOI:10.4236/jgis.2014.62010]
58. [58] A.-M. Olteanu Raimond and S. Mustière, "Data Matching – a Matter of Belief," in Headway in Spatial Data Handling, A. Ruas and C. Gold, Eds., ed: Springer Berlin Heidelberg, 2008, pp. 501-519.
59. [59] R. C. Veltkamp, "Shape matching: similarity measures and algorithms," in Shape Modeling and Applications, SMI 2001 International Conference on IEEE., 2001, pp. 188-197.
60. [60] H. Fan, B. Yang, A. Zipf, and A. Rousell, "A polygon-based approach for matching OpenStreetMap road networks with regional transit authority data," International Journal of Geographical Information Science, vol. 30, pp. 748-764, 2016. [DOI:10.1080/13658816.2015.1100732]
61. [61] A. Cecconi, "Integration of cartographic generalization and multi-scale databases for enhanced web mapping," Universität Zürich, 2003.
62. [62] C. Parent and S. Spaccapietra, "Database integration: the key to data interoperability," ed, 2000.
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ali Abbaspour R. Assessment of Optimization Algorithms on Multi-scale Matching of Spatial Datasets Based on Geometric Properties. jgit. 2018; 6 (2) :105-124
URL: http://jgit.kntu.ac.ir/article-1-591-fa.html

چهرقان علیرضا، علی عباسپور رحیم. ارزیابی الگوریتم‌های بهینه‌سازی در تناظریابی داده‌های مکانی چندمقیاسی مبتنی بر ویژگی‌های هندسی. مهندسی فناوری اطلاعات مکانی. 1397; 6 (2) :105-124

URL: http://jgit.kntu.ac.ir/article-1-591-fa.html



دوره 6، شماره 2 - ( 6-1397 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 30 queries by YEKTAWEB 3792