1. [1] Bastos L., Cunha S., Forsberg R., Olesen A., Gidskehaugj A., Timmen L. and Meyer U., 2000. On the use of Airborne Gravimetry in Gravity Field Modelling: Experiences from the AGMASCO Project. Physics and Chemis try of the Earth (A), 25 (1), l-7. [ DOI:10.1016/S1464-1895(00)00002-8] 2. [2] Featherstone W., Dentith M. and Kirby J.F., 2000. The Determination and Application of Vector Gravity Anomalie. Exploration Geophysics, 31, 109-113. [ DOI:10.1071/EG00109] 3. [3] Jekeli C., 2001. Inertial Navigation Systems with Geodetic Application, Berlin, New York: Walter de Gruyter . [ DOI:10.1515/9783110800234] 4. [4] Jekeli C. and Kwon J. H., 2002. Geoid Profile Determination by Direct Integration of GPS Inertial Navigation System Vector Gravimetry. Journal of Geophysical Researches, 107(B10), 2217. [ DOI:10.1029/2001JB001626] 5. [5] Li X., 2007. Moving base INS&GPS Vector Gravimetry on a Land Vehicle. Report 486, Department of Geodetic Science, Ohio State University Columbus. 6. [6] Serpas J.G. and Jekeli C., 2005. Local Geoid Determination from Airborne Vector Gravimetry. Journal of Geodesy, 78, 577–587. [ DOI:10.1007/s00190-004-0416-z] 7. [7] Van Gelderen M., 1991. The Geodetic Boundary Value Problem in Two Dimensions and Its Iterative Solution, Reports in Geodesy, No. 35, The Delft University of Technology, The Netherlands. 8. [8] Van Gelderen M. and Rummel R., 2001. The Solution of the General Boundary Value Problem by Least-squares. Journal of Geodesy, 75, 1-11. [ DOI:10.1007/s001900000146] 9. [9] Van Gelderen M. and Rummel R., 2002. Corrections to ''The Solution of the General Geodetic Boundary Value Problem by Least Squares". Journal of Geodesy, 76, 121–122. [ DOI:10.1007/s00190-001-0229-2] 10. [10] Martinec Z., 2003. Green's Function Solution to Spherical Gradiometric Boundary-value Problems, Journal of Geodesy, 77, 41-49. [ DOI:10.1007/s00190-002-0288-z] 11. [11] Bölling K. and Grafarend E., 2005. Ellipsoidal Spectral Properties of the Earth's Gravitational Potential and its First and Second Derivatives. Journal of Geodesy, 79: 300-330. [ DOI:10.1007/s00190-005-0465-y] 12. [12] Bjerhammar A., 1983. A Stochastic Approach to the Mixed Boundary Value Problem. In: k.p. Schwarz and G.Lachapelle, eds. Physical Geodesy. Geodesy in transition, A volume dedicated to Helmut Moritz on the occasion of his 50th birthday. Division of Surveying engineering, The University of Calgary, Canada, 25-42. 13. [13] Eshagh M., 2010. Optimal Combination of Integral Solutions of Gradiometric Boundary Value Problem using Variance Component Estimation in the Earth Gravitational Modelling. Earth, Planets and Space, 62(5), 437-448. [ DOI:10.5047/eps.2010.01.002] 14. [14] Sjöberg L.E., 1980. Least-squares Combination of Satellite Harmonics and Integral Formulas in Physical Geodesy. Gerlands Beitr. Geophysik, Leipzig, 89(5), 371-377. 15. [15] Sjöberg L.E., 1981. Least-squares Combination of Terrestrial and Satellite Data in Physical Geodesy. Ann, Geophys, 37, 25-30. 16. [16] Wenzel H.G., 1981. Zur Geoidbestimmung Durch Kombination Von Schwereanomalien und Einem Kugelfuncationsmodell mit Hilfe von Integralformeln. ZfV. 106 (3) 102-111. 17. [17] Sjöberg L.E., 1984. Least-Squares Modification of Stokes' and Vening-Meinez' Formula by Accounting for Truncation and Potential Coefficients Errors. Manuscripta Geodaetica, 9, 209-229. 18. [18] Sjöberg L.E., 1984. Least-squares Modification of Stokes' and Vening Meinesz' Formulas by Accounting for Errors of Truncation. Potential coefficients and gravity data, Report No. 27, Department of Geodesy, Uppsala. 19. [19] Sjöberg L.E., 1991. Refined Least-squares Modification of Stokes' Formula. Manuscripta Geodaetica, 16, 367-375. 20. [20] Sjöberg L.E., 2003. A General Model for Modifying Stokes' Formula and its Least-Squares Solution, Journal of Geodesy, 77, 459–464. [ DOI:10.1007/s00190-003-0346-1] 21. [21] Ågren J., 2004. Regional Geoid Determination Methods for the Era of Satellite Gravimetry, Numerical Investigations using Synthetic Earth Gravity Models. Ph.D. thesis in Geodesy, Royal Institute of Technology, Stockholm, Sweden. 22. [22] Ellmann A., 2004. The Geoid for the Baltic Countries Determined by the Least Squares Modification of Stokes' Formula. Ph.D. thesis in Geodesy, Royal Institute of Technology, Stockholm, Sweden. 23. [23] Kiamehr R., 2006. Precise Gravimetric Geoid Model for Iran based on GRACE and SRTM Data and the Least-squares Modification of Stokes' Formula with Some Geodynamic Interpretations.Ph.D. thesis in Geodesy, Royal Institute of Technology, Stockholm, Sweden. 24. [24] Daras I., 2008. Determination of a Gravimetric Geoid Model of Greece using the Method of KTH. M.Sc. Thesis in Geodesy and Geoinformatics Engineering, Royal Institute of Technology, Stockholm, Sweden. 25. [25] Abdallah A., 2009. Determination of a Gravimetric Geoid Model of Sudan using the KTH Method. M.Sc. Thesis in Geodesy and Geoinformatics Engineering, Royal Institute of Technology, Stockholm, Sweden. 26. [26] Eshagh M., 2010. Least-squares Modification of Extended Stokes' formula and its Second-Order Radial Derivative for Validation of Satellite Gravity Gradiometry Data. Journal of Geodynamics, 49, 92-104. [ DOI:10.1016/j.jog.2009.11.003] 27. [27] Eshagh M., 2011. Semi-stochastic Modification of Second-order Radial Derivative of Abel-Poisson's Formula for Validating Satellite Gravity Gradiometry Data. Advances in Space Research, 47, 757-767. [ DOI:10.1016/j.asr.2010.10.003] 28. [28] Tscherning C.C., Forsberg R. and Vermeer M., 1990. Methods for Regional Gravity Field Modelling from SST and SGG Data. Reports of the Finnish Geodetic Institute, Helsinki No. 90: 2. 29. [29] Eshagh M., 2011. On Integral Approach to Regional Gravity Field Modelling from Satellite Gradiometric Data. Acta Geophysica, 59(1), 29-54. [ DOI:10.2478/s11600-010-0033-6] 30. [30] Eshagh M., 2008. Non-singular Expressions for Vector and Gradient Tensor of Gravitation in a Geocentric Spherical Frame. Computers & Geosciences, 32, 1762-1768. [ DOI:10.1016/j.cageo.2008.02.022] 31. [31] Heiskanen W. and Moritz H., 1967. Physical Geodesy. San Francisco and London: W.H. Freeman and company. 32. [32] Sjöberg L.E. and Eshagh M., 2009. A Geoid Solution for Airborne Gravity Data. Studia Geophysica et Geodaetica, 53, 359-374. [ DOI:10.1007/s11200-009-0025-7] 33. [33] Pavlis N., Holmes SA., Kenyon SC. and Factor JK., 2008. An Earth Gravitational Model to Degree 2160: EGM08. In the 2008 General Assembly of the European Geosciences :union:, Vienna, Austria. 34. [34] Tscherning C.C. and Rapp R., 1974. Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations and Deflections of Vertical Implied by Anomaly Degree Variance Models. Rep. 355. Dept. Geod. Sci. Ohio State University, Columbus, USA. 35. [35] Sjöberg L.E., 1986. Comparisons of some Methods of Modifying Stokes' Formula. Boll. Geod. Sci. Aff., 3, 229-248. 36. [36] Eshagh M., 2011. The Effect of Spatial Truncation Error on Integral Inversion of Satellite Gravity Gradiometry Data. Advances in Space Research, 47, 1238-1247. [ DOI:10.1016/j.asr.2010.11.035]
|