1. [1] M. Castelli, R. Stöckli, D. Zardi, A. Tetzlaff, J. E. Wagner, G. Belluardo, et al., "The HelioMont method for assessing solar irradiance over complex terrain: Validation and improvements," Remote Sensing of Environment, vol. 152, pp. 603-613, 2014. 2. [2] Y. Ryu, S. Kang, S.-K. Moon, and J. Kim, "Evaluation of land surface radiation balance derived from moderate resolution imaging spectroradiometer (MODIS) over complex terrain and heterogeneous landscape on clear sky days," Agricultural and Forest Meteorology, vol. 148, pp. 1538-1552, 2008. 3. [3] S. Liang, Advanced Remote Sensing. Boston: Academic Press, 2012. 4. [4] L. Chen, G. Yan, T. Wang, H. Ren, J. Calbó, J. Zhao, et al., "Estimation of surface shortwave radiation components under all sky conditions: Modeling and sensitivity analysis," Remote Sensing of Environment, vol. 123, pp. 457-469, 2012. 5. [5] C. A. Gueymard, "Temporal variability in direct and global irradiance at various time scales as affected by aerosols," Solar Resources, vol. 86, pp. 3544-3553, 2012. 6. [6] S. Liang, Quantitative Remote Sensing of Land Surfaces. Hoboken, NJ: John Wiley & Sons, Inc., 2004. 7. [7] R. T. Pinker and I. Laszlo, "Modeling Surface Solar Irradiance for Satellite Applications on a Global Scale," Journal of Applied Meteorology, vol. 31, pp. 194-211, 1992. https://doi.org/10.1175/1520-0450(1992)031<0194:MSSIFS>2.0.CO;2 [ DOI:10.1175/1520-0450(1992)0312.0.CO;2] 8. [8] Z. Li, H. G. Leighton, K. Masuda, and T. Takashima, "Estimation of SW Flux Absorbed at the Surface from TOA Reflected Flux," Journal of Climate, vol. 6, pp. 317-330, 1993. https://doi.org/10.1175/1520-0442(1993)006<0317:EOSFAA>2.0.CO;2 [ DOI:10.1175/1520-0442(1993)0062.0.CO;2] 9. [9] G. L. Stephens, A. Slingo, M. J. Webb, P. J. Minnett, P. H. Daum, L. Kleinman, et al., "Observations of the Earth's Radiation Budget in relation to atmospheric hydrology: 4. Atmospheric column radiative cooling over the world's oceans," Journal of Geophysical Research: Atmospheres, vol. 99, pp. 18585-18604, 1994. 10. [10] Y. C. Zhang, W. B. Rossow, and A. A. Lacis, "Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 1. Method and sensitivity to input data uncertainties," Journal of Geophysical Research: Atmospheres, vol. 100, pp. 1149-1165, 1995. 11. [11] S. K. Gupta, N. A. Ritchey, A. C. Wilber, C. H. Whitlock, G. G. Gibson, and P. W. Stackhouse, "A Climatology of Surface Radiation Budget Derived from Satellite Data," Journal of Climate, vol. 12, pp. 2691-2710, 1999. https://doi.org/10.1175/1520-0442(1999)012<2691:ACOSRB>2.0.CO;2 [ DOI:10.1175/1520-0442(1999)0122.0.CO;2] 12. [12] R. W. Mueller, K. F. Dagestad, P. Ineichen, M. Schroedter-Homscheidt, S. Cros, D. Dumortier, et al., "Rethinking satellite-based solar irradiance modelling: The SOLIS clear-sky module," Remote Sensing of Environment, vol. 91, pp. 160-174, 2004. 13. [13] C. Rigollier, M. Lefèvre, and L. Wald, "The method Heliosat-2 for deriving shortwave solar radiation from satellite images," Solar Energy, vol. 77, pp. 159-169, 2004. 14. [14] . Bisht, V. Venturini, S. Islam, and L. Jiang, "Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days," Remote Sensing of Environment, vol. 97, pp. 52-67, 2005. 15. [15] H.-Y. Kim and S. Liang, "Development of a hybrid method for estimating land surface shortwave net radiation from MODIS data," Remote Sensing of Environment, vol. 114, pp. 2393-2402, 2010. 16. [16] MODIS (2016, Web Page). Modis – Moderate Resolution Imaging Spectroradiometer. Available: http://modis.gsfc.nasa.gov/ 17. [17] G. Huang, S. Liu, and S. Liang, "Estimation of net surface shortwave radiation from MODIS data," International Journal of Remote Sensing, vol. 33, pp. 804-825, 2012. 18. [18] M. Suri, J. Remund, T. Cebecauer, C. Hoyer-Click, D. Dumortier, T. Huld, et al., "Comparison of Direct Normal Irradiation Maps for Europe," in Solar Paces, ed. Berlin, Germany: In: Proc. SolarPACES Conf, 2009. 19. [19] C. A. Gueymard, "Uncertainties in Modeled Direct Irradiance Around the Sahara as Affected by Aerosols: Are Current Datasets of Bankable Quality?," Journal of Solar Energy Engineering, vol. 133, pp. 031024-031024, 2011. 20. [20] R. C. Levy, L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, "Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance," Journal of Geophysical Research: Atmospheres, vol. 112, p. D13211, 2007. 21. [21] N. C. Hsu, T. Si-Chee, M. D. King, and J. R. Herman, "Aerosol properties over bright-reflecting source regions," Geoscience and Remote Sensing, IEEE Transactions on, vol. 42, pp. 557-569, 2004. 22. [22] R. C. Levy, L. A. Remer, R. G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, et al., "Global evaluation of the Collection 5 MODIS dark-target aerosol products over land," Atmospheric Chemistry and Physics, vol. 10, pp. 10399-10420, 2010. 23. [23] M. Bilal, J. E. Nichol, M. P. Bleiweiss, and D. Dubois, "A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces," Remote Sensing of Environment, vol. 136, pp. 135-145, 2013. 24. [24] M. Bilal, J. E. Nichol, and P. W. Chan, "Validation and accuracy assessment of a Simplified Aerosol Retrieval Algorithm (SARA) over Beijing under low and high aerosol loadings and dust storms," Remote Sensing of Environment, vol. 153, pp. 50-60, 2014. 25. [25] P. Hubanks, M. King, S. Platnick, and R. Pincus, "MODIS atmosphere L3 gridded product algorithm theoretical basis document Collection 005 Version 1.1," 2008. 26. [26] L. Chengcai, A. K. H. Lau, M. Jietai, and D. A. Chu, "Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong," IEEE Transactions on Geoscience and Remote Sensing, vol. 43, pp. 2650-2658, 2005. 27. [27] M. S. Wong, J. E. Nichol, and K. H. Lee, "An operational MODIS aerosol retrieval algorithm at high spatial resolution, and its application over a complex urban region," Atmospheric Research, vol. 99, pp. 579-589, 2011. 28. [28] R. M. Houborg and H. Soegaard, "Regional simulation of ecosystem CO2 and water vapor exchange for agricultural land using NOAA AVHRR and Terra MODIS satellite data. Application to Zealand, Denmark," Remote Sensing of Environment, vol. 93, pp. 150-167, 2004. 29. [29] R. E. Bird and R. L. Hulstrom, "Review, Evaluation, and Improvement of Direct Irradiance Models," Journal of Solar Energy Engineering, vol. 103, pp. 182-192, 1981. 30. [30] M. Iqbal, "Total (Broadband) Radiation under Cloudless Skies," in An Introduction to Solar Radiation, M. Iqbal, Ed., ed Toronto: Academic Press, 1983, pp. 169-213. 31. [31] K. Yang, G. W. Huang, and N. Tamai, "A hybrid model for estimating global solar radiation," Solar Energy, vol. 70, pp. 13-22, 2001. 32. [32] B. Leckner, "The spectral distribution of solar radiation at the earth's surface—elements of a model," Solar Energy, vol. 20, pp. 143-150, 1978. 33. [33] C. A. Gueymard, "Direct solar transmittance and irradiance predictions with broadband models. Part I: detailed theoretical performance assessment," Solar Energy, vol. 74, pp. 355-379, 2003. 34. [34] C. A. Gueymard, "Direct solar transmittance and irradiance predictions with broadband models. Part II: validation with high-quality measurements," Solar Energy, vol. 74, pp. 381-395, 2003. 35. [35] M. Paulescu and Z. Schlett, "Performance assessment of global solar irradiation models under Romanian climate," Renewable Energy, vol. 29, pp. 767-777, 2004. 36. [36] M. Paulescu and Z. Schlett, "A simplified but accurate spectral solar irradiance model," Theoretical and Applied Climatology, vol. 75, pp. 203-212, 2003. 37. [37] M. A. Madkour, M. El-Metwally, and A. B. Hamed, "Comparative study on different models for estimation of direct normal irradiance (DNI) over Egypt atmosphere," Renewable Energy, vol. 31, pp. 361-382, 2006. 38. [38] IRIMO (2016, Web Page). I. R. of Iran Meteorological Office. Available: http://www.irimo.ir/ 39. [39] B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, et al., "AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization," Remote Sensing of Environment, vol. 66, pp. 1-16, 1998. 40. [40] B. N. Holben, D. Tanré, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, et al., "An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET," Journal of Geophysical Research: Atmospheres, vol. 106, pp. 12067-12097, 2001. 41. [41] E. F. Vermote, S. Vibert, H. Kilcoyne, D. Hoyt, and T. Zhao, "Suspended Matter. Visible/Infrared Imager/Radiometer Suite algorithm theroretical basis document. SBRS Document# Y2390, Raytheon Systems Company," Information Technology and Scientific Services, Maryland, 2002. 42. [42] NASA (2016, Web Page). Modis Level 1, Atmosphere and Land data products. Available: http://ladsweb.nascom.nasa.gov. 43. [43] O. Lado-Bordowsky and I. Naour, "Optical paths involved in determining the scattering angle for the scattering algorithm developed in LOWTRAN7," International Journal of Infrared and Millimeter Waves, vol. 18, pp. 1689-1696, 1997. 44. [44] H. Rahman, B. Pinty, and M. M. Verstraete, "Coupled surface-atmosphere reflectance (CSAR) model: 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data," Journal of Geophysical Research: Atmospheres, vol. 98, pp. 20791-20801, 1993. 45. [45] R. C. Levy, L. A. Remer, and O. Dubovik, "Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land," Journal of Geophysical Research: Atmospheres, vol. 112, p. D13210, 2007. 46. [46] D. Tanre, M. Herman, P. Y. Deschamps, and A. d. Leffe, "Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties," Appl.Opt., vol. 18, pp. 3587-3594, 1979. 47. [47] C. Kelley, Iterative Methods for Linear and Nonlinear Equations: Society for Industrial and Applied Mathematics, 1995. 48. [48] C. Ichoku, R. Levy, Y. J. Kaufman, L. A. Remer, R.-R. Li, V. J. Martins, et al., "Analysis of the performance characteristics of the five-channel Microtops II Sun photometer for measuring aerosol optical thickness and precipitable water vapor," Journal of Geophysical Research: Atmospheres, vol. 107, pp. AAC 5-1-AAC 5-17, 2002. 49. [49] J. A. Ruiz-Arias, J. Dudhia, C. A. Gueymard, and D. Pozo-Vazquez, "Assessment of the Level-3 MODIS daily aerosol optical depth in the context of surface solar radiation and numerical weather modeling," Atmospheric Chemistry and Physics, vol. 13, pp. 675-692, 2013.
|