1. [1] Koehorst, B.A.N., Kjekstad, O., Patel, D., Lubkowski, Z., Knoeff, J.G. and Akkerman, G.J., 2005. Work Package 6, Determination of Socio-Economic Impact of Natural Disasters. Assessing socio-economic Impact in Europe, p.173. 2. [2] Landslide Working Party, 2007. Iranian Landslides List, Forest. Rangeland and Watershed Association, p.60. 3. [3] Shahabi, M. and Sadoddin, A., 2009. Bayesian Decision Network Approach for Predicting Impacts of Drought Management Actions in Dry Land Wheat Areas of Golestan Province. In: 5Th National Conference of watershed management, Iran, 3140-3149. 4. [4] Lee, S., Choi, J. and Min, K., Retrieved from www.adpc.net/casita/case-studieo 2002. Landslide Susceptibility Analysis and Verification Using the Bayesian Probability Model. Environmental Geology, 43, 120–131. 5. [5] Neuhäuser, B. and Terhorst, B., 2007. Landslide Susceptibility Assessment using "Weights-of-evidence" Applied to a Study Area at the Jurassic Escarpment (SW- Germany). Geomorphology, 86, 12–24. [ DOI:10.1016/j.geomorph.2006.08.002] 6. [6] Bui, H.B., Nguyen, Q. and Nguyen, V.T., 2008. GIS-based Weight of Evidence Modeling for Landslide Susceptibility Mapping at Jaechon Area, Korea. In: International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences. 7. [7] Song, R.H., Hiromu, D., Kazutoki, A., Usio, K. and Sumio, M., 2008. Modeling the Potential Distribution of Shallow-seated Landslides Using the Weights of Evidence Method and a Logistic Regression Model: A Case Study of the Sabae Area, Japan. International Journal of Sediment Research, 23, 106-118. [ DOI:10.1016/S1001-6279(08)60010-4] 8. [8] Zhu, C. and Wang, X., 2009. Landslide Susceptibility Mapping: A Comparison of Information and Weights-of Evidence Methods in Three Gorges Area. International Conference on Environmental Science and Information Application Technology, IEEE, DOI 10.1109/ESIAT.2009.187, 342-346. [ DOI:10.1109/ESIAT.2009.187] 9. [9] Moore, I.D., Gessler, P.E., Neslesn, G.A. and Peterson, G.A., 1993. Soil Attribute Prediction using Terrain Analysis. Soil Science Society of American Journal, 57(2), 443-452. [ DOI:10.2136/sssaj1993.03615995005700020026x] 10. [10] Yesilnacar, E. and Hunter, G.J., 2004. Application of Neural Networks for Landslide Susceptibility Mapping in Turkey. In: J.P. van Leeuwen and H.J.P. Timmermans, eds., Recent Advances in Design and Decision Support Systems in Architecture and Urban Planning, 3-18. [ DOI:10.1007/1-4020-2409-6_1] 11. [11] Gokceoglu, C., Sonmez, H., Nefeslioglu, H.A., Duman, T.Y. and Can, T., 2005. The March 17, 2005 Kuzulu Landslide (Sivas, Turkey) and Landslide Susceptibility Map of Its Near Vicinity. Eng Geo, l 81(1):65–83. [ DOI:10.1016/j.enggeo.2005.07.011] 12. [12] Nefeslioglu, H.A., Gokceoglu, C. and Sonmez, H., 2008. An Assessment on the Use of Logistic Regression and Artificial Neural Networks with Different Sampling Strategies for the Preparation of Landslide Susceptibility Maps. Engineering Geology, 97, 171–191. [ DOI:10.1016/j.enggeo.2008.01.004] 13. [13] Yilmaz, I., 2009. Landslide Susceptibility Mapping using Frequency Ratio, Logistic Regression, Artificial Neural Networks and Their Comparison: A Case Study from Kat Landslides (Tokat-Turkey). Comp Geosc, 35 (6), 1125-1138. [ DOI:10.1016/j.cageo.2008.08.007] 14. [14] Akgun, A. and Needet, T., 2010. Landslide Susceptibility Mapping for Ayvalik (Western Turkey) and its Vicinty by Multi Criteria Decision Analysis. Environ Earth Science, 61, 595–611. [ DOI:10.1007/s12665-009-0373-1] 15. [15] Poudyal, C.P., Chang, C., Oh, H.J. and Lee, S., 2010. Landslide Susceptibility Maps Comparing Frequency Ratio and Artificial Neural Networks: A case Study from the Nepal Himalaya. Environ Earth Sci, 61, 1049–1064. [ DOI:10.1007/s12665-009-0426-5] 16. [16] Regmi, N.R., Giardino, J.R. and Vitek, J.D., 2010. Modeling Susceptibility to Landslides using the Weight of Evidence Approach: Western Colorado, USA. Geomorphology, 115, 172–187. [ DOI:10.1016/j.geomorph.2009.10.002] 17. [17] Van Western, C.J., 2002. Use of Weights of Evidence Modeling for Landslide Susceptibility Mapping, [lecture notes], Retriered from www.adpc.net/casita/case-studies p. 21. 18. [18] Remendo, J., Gonzales, A., Teran, J., Cendrero, A., Fabbri, A. and Chung, C., 2003. Validation of Landslide Susceptibility Maps, Examples and Applications from a Case Study in Northern Spain, Natural Hazard, 437-449. 19. [19] Pourghasemi, H.R, Moradi, H.R., Mohammadi, M. and Mahdavifar, M.R., 2009. Landslide Hazard Susceptibility Mapping and its Evaluation Using the Fuzzy Operators. Journal Science and Technology Agriculture and Natural Resources, 12(46A), 375-390. 20. [20] Pourghasemi, H.R., Moradi, H.R. Fatemi Aghda, S.M. Mahdavifar, M.R. and Mohammdi, M., 2009. Landslide Hazard Assessment Using Fuzzy Multi Criteria Decision- Making Method. Iran-Watershed Management Science and Engineering, 3(8), 51-63. 21. [21] Yesilnacar, E.K., 2005. The Application of Computational Intelligence to Landslide Susceptibility Mapping in Turkey. Ph.D. Thesis, Department of Geomatics the University of Melbourne, p. 423. 22. [22] Suzen, M.L. and Doyuran, V., 2004. A Comparision of the GIS based Landslide Susceptibility Assessment Method: Multivariate Versus Bivariate. Environmental Geology, 71, 303-321. 23. [23] Kincal, C., Akgun, A. and Koca, M.Y., 2009. Landslide Susceptibility Assessment in the Izmir (West Anatolia, Turkey) City Center and Its Near Vicinity by the Logistic Regression Method. Environmental Earth Science, Doi: 10.1007/s12665-009-0070-0. [ DOI:10.1007/s12665-009-0070-0] 24. [24] Swets, J.A., 1988. Measuring the Accuracy of Diagnostic Systems. Science, 240, 1285-1293. [ DOI:10.1126/science.3287615]
|