1. [1] D. Landgrebe, "On information extraction principles for hyperspectral data," Purdue University, West Lafayette, IN, USA, vol. 34, 1997. 2. [2] G. Shaw and D. Manolakis, "Signal processing for hyperspectral image exploitation," IEEE Signal processing magazine, vol. 19, pp. 12-16, 2002. [ DOI:10.1109/79.974715] 3. [3] L. Gao, Q. Guo, A. J. Plaza, J. Li, and B. Zhang, "Probabilistic anomaly detector for remotely sensed hyperspectral data," Journal of applied remote sensing, vol. 8, 2002. [ DOI:10.1117/1.JRS.8.083538] 4. [4] C.-I. Chang, Hyperspectral data processing: algorithm design and analysis: John Wiley & Sons, 2013. [ DOI:10.1002/9781118269787] 5. [5] A. Chudnovsky, A. Kostinski, L. Herrmann, I. Koren, G. Nutesku, and E. Ben-Dor, "Hyperspectral spaceborne imaging of dust-laden flows: Anatomy of Saharan dust storm from the Bodélé Depression," Remote sensing of environment, pp.1013-1024, 2011. [ DOI:10.1016/j.rse.2010.12.006] 6. [6] M. Liu, X. Liu, L. Wu, L. Duan, and B. Zhong, "Wavelet-based detection of crop zinc stress assessment using hyperspectral reflectance," Computers & geosciences,vol.37, pp.1254-1263, 2011. [ DOI:10.1016/j.cageo.2010.11.019] 7. [7] M. Prabhakar, Y. Prasad, M. Thirupathi, G. Sreedevi, B. Dharajothi, and B. Venkateswarlu, "Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae)," Computers and Electronics in Agriculture, vol.79, pp. 189-198, 2011. [ DOI:10.1016/j.compag.2011.09.012] 8. [8] M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, "Automated hyperspectral cueing for civilian search and rescue," Proceedings of the IEEE, vol. 97, pp. 1031-1055, 2009. [ DOI:10.1109/JPROC.2009.2013561] 9. [9] P. W. Yuen and G. Bishop, "Hyperspectral algorithm development for military applications: A multiple fusion approach," in 3rd EMRS DTC Technical Conference, pp.16-17, 2006. 10. [10] C. Zhao, Y. Wang, B. Qi, and J. Wang, "Global and local real-time anomaly detectors for hyperspectral remote sensing imagery," Remote Sensing, vol. 7, pp. 3966-3985, 2015. [ DOI:10.3390/rs70403966] 11. [11] W. Sun, C. Liu, J. Li, Y. M. Lai, and W. Li, "Low-rank and sparse matrix decomposition-based anomaly detection for hyperspectral imagery," Journal of Applied Remote Sensing, vol. 8, 2014. [ DOI:10.1117/1.JRS.8.083641] 12. [12] A. Huck and M. Guillaume, "Asymptotically CFAR-unsupervised target detection and discrimination in hyperspectral images with anomalous-component pursuit," IEEE Transactions on Geoscience and Remote Sensing, vol. 48, pp. 3980-3991, 2010. [ DOI:10.1109/TGRS.2010.2063434] 13. [13] J. Meola, M. T. Eismann, R. L. Moses, and J. N. Ash, "detecting changes in hyperspectral imagery using a model-based approach," IEEE Transactions on Geoscience and Remote Sensing, vol. 49, pp. 2647-2661, 2011. [ DOI:10.1109/TGRS.2011.2109726] 14. [14] Y. Xu, Z. Wu, J. Li, A. Plaza, and Z. Wei, "Anomaly detection in hyperspectral images based on low-rank and sparse representation," IEEE Transactions on Geoscience and Remote Sensing, vol. 54, pp. 1990-2000, 2016. [ DOI:10.1109/TGRS.2015.2493201] 15. [15] E. A. Ashton and A. Schaum, "Algorithms for the detection of sub-pixel targets in multispectral imagery," Photogrammetric Engineering & Remote Sensing, vol. 64, pp. 723-731, 1998. 16. [16] S. Küçük and S. E. Yüksel, "Comparison of RX-based anomaly detectors on synthetic and real hyperspectral data," in Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp.1-4, 2015. [ DOI:10.1109/WHISPERS.2015.8075504] 17. [17] N. M. Nasrabadi, "hyperspectral target detection : An overview of current and future challenges," IEEE Signal Processing Magazine, vol. 31, pp.34-44, 2014. [ DOI:10.1109/MSP.2013.2278992] 18. [18] R. Zhao, B. Du, and L. Zhang, "A robust nonlinear hyperspectral anomaly detection approach," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, pp. 1227-1234, 2014. [ DOI:10.1109/JSTARS.2014.2311995] 19. [19] B. Du and L. Zhang, "Random-selection-based anomaly detector for hyperspectral imagery," IEEE Transactions on Geoscience and Remote Sensing, vol. 49, pp. 1578-1579, 2011. [ DOI:10.1109/TGRS.2010.2081677] 20. [20] K. Heesung and N. M. Nasrabadi, "Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imager ," IEEE Transactions on Geoscience and Remote Sensing, vol. 43, pp. 388-397, 2005. [ DOI:10.1109/TGRS.2004.841487] 21. [21] N. Henze and T. Wagner, "A new approach to the BHEP tests for multivariate normality," Journal of Multivariate Analysis, vol. 62, pp. 1-23, 1997. [ DOI:10.1006/jmva.1997.1684] 22. [22] L. Ma, M. M. Crawford, and J. Tian, "Anomaly detection for hyperspectral images based on robust locally linear embedding," Journal of Infrared, Millimeter, and Terahertz Waves, vol. 31, pp. 753-762, 2010. [ DOI:10.1007/s10762-010-9630-3] 23. [23] M. Zare-Baghbidi, S. Homayouni, and K. Jamshidi, "Improving the RX anomaly detection algorithm for hyperspectral images using FFT," Journal of Modeling and Simulation in Electrical and Electronics Engineering," vol. 1, pp. 33-39, 2015. 24. [24] M. Zare Baghbidi, K. Jamshidi, A. Naghsh-Nilchi, and S. Homayouni, "Improvement of anomoly detection algorithms in hyperspectral images using discrete wavelet transform," Signal & Image Processing : An International Journal (SIPIJ), vol.2, pp. 13-25, 2011. [ DOI:10.5121/sipij.2011.2402] 25. [25] A. Moghimi, A. Mohammadzadeh, and S. Khazai, "Integrating thresholding with level set method for unsupervised change detection in multitemporal SAR images," Canadian Journal of Remote Sensing, vol.43, pp. 412-431, 2017. [ DOI:10.1080/07038992.2017.1342205] 26. [26] N. Billor, A. S. Hadi, and P. F. Velleman, "BACON: blocked adaptive computationally efficient outlier nominators," Computational Statistics & Data Analysis, vol. 34, pp. 279-298, 2000. [ DOI:10.1016/S0167-9473(99)00101-2] 27. [27] A. Banerjee, P. Burlina, and C. Diehl, "A support vector method for anomaly detection in hyperspectral imagery," IEEE Transactions on Geoscience and Remote Sensing, vol. 44, pp. 2282-2291, 2006. [ DOI:10.1109/TGRS.2006.873019] 28. [28] S. Khazai, S. Homayouni, A. Safari, and B. Mojaradi, "Anomaly detection in hyperspectral images based on an adaptive support vector method," IEEE Geoscience and Remote Sensing Letters, vol. 8, pp. 646-650, 2011. [ DOI:10.1109/LGRS.2010.2098842] 29. [29] Y. Wang, D. Yang, and M. Deng, "Low-rank and sparse matrix decomposition for genetic interaction data," BioMed research international, vol. 2015, pp. 573956-573956, 2015. [ DOI:10.1155/2015/573956] 30. [30] M. Eastaway, "The Discrete Wavelet Transform," [Online]. Available: http://cnx.org/content/m18985/latest/. 31. [31] C. H. Park and J. H. Chang, "Time-of-arrival source localization based on weighted least squares estimator in line-of-sight/non-line-of-sight mixture environments," International Journal of Distributed Sensor Networks, vol. 12, pp. 1-13, 2016. [ DOI:10.1177/1550147716683827] 32. [32] A. Sumarsono and Q. Du, "Estimation of number of signal subspaces in hyperspectral imagery using low-rank subspace representation," in Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1-4, 2014. [ DOI:10.1109/WHISPERS.2014.8077620] 33. [33] X. Yuan and J. Yang, "Sparse and low rank matrix decomposition via alternating direction method," Pacific Journal of Optimization, vol. 9, pp. 1-11, 2009. 34. [34] M. Zare-Baghbidi, S. Homayouni, K. Jamshidi, A. R. Naghsh-Nilchi, "Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images," Journal of AI and Data Mining, vol. 3, pp.11-20, 2015. [ DOI:10.5829/idosi.JAIDM.2015.03.01.02] 35. [35] S. Kaewpiji, J. Le Moigne, T, El-Ghazawi, "Spectral data reduction via wavelet decomposition," Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 4738, 2002. [ DOI:10.1117/12.458728]
|