[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
بایگانی مقالات زیر چاپ::
آمار نشریه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
آمار سایت
مقالات منتشر شده: 324
نرخ پذیرش: 63.1
نرخ رد: 36.9
میانگین داوری: 208 روز
میانگین انتشار: 345 روز
..
:: دوره 7، شماره 3 - ( 9-1398 ) ::
جلد 7 شماره 3 صفحات 102-79 برگشت به فهرست نسخه ها
تعیین عوامل موثر بر دمای سطح زمین شهر تهران با استفاده از تصاویر لندست و ترکیب رگرسیون وزن‌دار جغرافیایی و الگوریتم ژنتیک
عامر کریمی ، پرهام پهلوانی* ، بهناز بیگدلی
دانشگاه تهران
چکیده:   (3332 مشاهده)
با توجه به توسعه شهرنشینی و تغییر در محیط حرارتی شهری، شناسایی عوامل مکانی موثر بر دمای سطح زمین در مناطق شهری از اهمیت بالایی برخوردار است. از این‌رو با شناسایی این عوامل می‌توان در جهت پیشگیری هرچه بیشتر این پدیده بااستفاده از آموزش عمومی، وضع قوانین و سیاست‌های مدیریتی کارآمد و نظارت بیشتر جهت مقابله با عوامل محرک افزایش دمای سطح زمین برآییم. در این تحقیق، هدف شناسایی ترکیب بهینه عوامل مکانی موثر بر دمای سطح زمین شهر تهران است. در این راستا، جهت شناسایی عوامل موثر از روش رگرسیون وزن‌دار جغرافیایی (GWR) و جهت انتخاب ترکیب بهینه عوامل موثر بر روی دمای سطح زمین شهر تهران از الگوریتم ژنتیک استفاده شد. روش ترکیبی پیشنهادی روش مناسبی برای مسائل رگرسیون مکانی است زیرا این روش با دو خواص منحصر به فرد داده‌های مکانی یعنی خودهمبستگی و ناایستایی مکانی سازگار می‌باشد. در این تحقیق داده‌های دمای سطح زمین شهر تهران در دو تاریخ 27 مرداد 93 و 30 مرداد 94 بااستفاده از تصاویر ماهواره لندست8 بدست آمد و از دو روش وزن‌دهی گوسین و مکعبی سه‌گانه در GWR استفاده شد. مقدار تابع برازش (1-R2) برای دو تاریخ اشاره شده در فوق، بااستفاده از هسته گوسین 21752/0 و 23448/0 و با استفاده از هسته مکعبی سه‌گانه 10452/0 و 14494/0 به‌دست آمد. تاثیر عوامل کاربری اراضی، تراکم ساخت و ساز و فاصله از راه‌ها در دمای سطح زمین شهر تهران از سایر عوامل بیشتر بود. همچنین با استفاده از هسته مکعبی سه‌گانه برای وزن‌دهی در GWR، نتایج دقیق‌تر و مناسب‌تری به‌دست آمد.
واژه‌های کلیدی: دمای سطح زمین، رگرسیون وزندار جغرافیایی، الگوریتم ژنتیک
متن کامل [PDF 2314 kb]   (1542 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سیستمهای اطلاعات مکانی (عمومی)
دریافت: 1397/1/18 | پذیرش: 1397/4/9 | انتشار: 1398/9/30
فهرست منابع
1. [1] S. Li, Z. Zhao, X. Miaomiao, and Y. Wang, "Investigating spatial non-stationary and scale-dependent relationships between urban surface temperature and environmental factors using geographically weighted regression," Environmental Modelling & Software, vol. 25, pp. 1789-1800, 2010. [DOI:10.1016/j.envsoft.2010.06.011]
2. [2] G. Xian and M. Crane, "Evaluation of urbanization influences on urban climate with remote sensing and climate observations," in Proceedings of the ISPRS joint conference 3rd International Symposium Remote Sensing and Data Fusion Over Urban Areas (URBAN 2005) 5th International Symposium Remote Sensing of Urban Areas (URS 2005) Tempe, AZ, 2005, pp. 14-16.
3. [3] Q. Weng, "A remote sensing? GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China," International journal of remote sensing, vol. 22, pp. 1999-2014, 2001. [DOI:10.1080/01431160152043676]
4. [4] D. R. Streutker, "Satellite-measured growth of the urban heat island of Houston, Texas," Remote Sensing of Environment, vol. 85, pp. 282-289, 2003. [DOI:10.1016/S0034-4257(03)00007-5]
5. [5] R. Pu, P. Gong, R. Michishita, and T. Sasagawa, "Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval," Remote Sensing of Environment, vol. 104, pp. 211-225, 2006. [DOI:10.1016/j.rse.2005.09.022]
6. [6] W. Peng, J. Zhou, L. Wen, S. Xue, and L. Dong, "Land surface temperature and its impact factors in Western Sichuan Plateau, China," Geocarto International, vol. 32, pp. 919-934, 2017. [DOI:10.1080/10106049.2016.1188167]
7. [7] Q. Weng and S. Yang, "Managing the adverse thermal effects of urban development in a densely populated Chinese city," Journal of Environmental Management, vol. 70, pp. 145-156, 2004. [DOI:10.1016/j.jenvman.2003.11.006]
8. [8] G. Huang, W. Zhou, and M. Cadenasso, "Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD," Journal of environmental management, vol. 92, pp. 1753-1759, 2011. [DOI:10.1016/j.jenvman.2011.02.006]
9. [9] R. C. Estoque, Y. Murayama, and S. W. Myint, "Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia," Science of The Total Environment, vol. 577, p. 11, 15 January 2017. [DOI:10.1016/j.scitotenv.2016.10.195]
10. [10] Y.-C. Chen, H.-W. Chiu, Y.-F. Su, Y.-C. Wu, and K.-S. Cheng, "Does urbanization increase diurnal land surface temperature variation? Evidence and implications," Landscape and Urban Planning, vol. 157, p. 12, January 2017. [DOI:10.1016/j.landurbplan.2016.06.014]
11. [11] R. Xiao, Q. Weng, Z. Ouyang, W. Li, E. W. Schienke, and Z. Zhang, "Land surface temperature variation and major factors in Beijing, China," Photogrammetric Engineering & Remote Sensing, vol. 74, pp. 451-461, 2008. [DOI:10.14358/PERS.74.4.451]
12. [12] X.-L. Chen, H.-M. Zhao, P.-X. Li, and Z.-Y. Yin, "Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes," Remote sensing of environment, vol. 104, pp. 133-146, 2006. [DOI:10.1016/j.rse.2005.11.016]
13. [13] W. Zhou, G. Huang, and M. L. Cadenasso, "Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes," Landscape and Urban Planning, vol. 102, pp. 54-63, 2011. [DOI:10.1016/j.landurbplan.2011.03.009]
14. [14] P. Dutilleul and P. Legendre, "Spatial heterogeneity against heteroscedasticity: an ecological paradigm versus a statistical concept," Oikos, pp. 152-171, 1993. [DOI:10.2307/3545210]
15. [15] W. Jetz, C. Rahbek, and J. W. Lichstein, "Local and global approaches to spatial data analysis in ecology," Global Ecology and Biogeography, vol. 14, pp. 97-98, 2005. [DOI:10.1111/j.1466-822X.2004.00129.x]
16. [16] C. Brunsdon, S. Fotheringham, and M. Charlton, "Geographically weighted regression," Journal of the Royal Statistical Society: Series D (The Statistician), vol. 47, pp. 431-443, 1998. [DOI:10.1111/1467-9884.00145]
17. [17] L. Zhang, J. H. Gove, and L. S. Heath, "Spatial residual analysis of six modeling techniques," Ecological Modelling, vol. 186, pp. 154-177, 2005. [DOI:10.1016/j.ecolmodel.2005.01.007]
18. [18] A. Sekertekin, S. Kutoglu, S. Kaya, and A. Marangoz, "Analysing the Effects of Different Land Cover Types on Land Surface Temperature Using Satellite Data," The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 40, p. 665, 2015. [DOI:10.5194/isprsarchives-XL-1-W5-665-2015]
19. [19] S. Kaya, U. G. Basar, M. Karaca, and D. Z. Seker, "Assessment of urban heat islands using remotely sensed data," Ekoloji, vol. 21, pp. 107-113, 2012. [DOI:10.5053/ekoloji.2012.8412]
20. [20] J. A. Voogt and T. Oke, "Effects of urban surface geometry on remotely-sensed surface temperature," International Journal of Remote Sensing, vol. 19, pp. 895-920, 1998. [DOI:10.1080/014311698215784]
21. [21] A. Chudnovsky, E. Ben-Dor, and H. Saaroni, "Diurnal thermal behavior of selected urban objects using remote sensing measurements," Energy and Buildings, vol. 36, pp. 1063-1074, 2004. [DOI:10.1016/j.enbuild.2004.01.052]
22. [22] Z. Wan, "MODIS land-surface temperature algorithm theoretical basis document (LST ATBD)," Institute for Computational Earth System Science, Santa Barbara, vol. 75, 1999.
23. [23] Z. Qin, A. Karnieli, and P. Berliner, "A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region," International Journal of Remote Sensing, vol. 22, pp. 3719-3746, 2001. [DOI:10.1080/01431160010006971]
24. [24] J. Sobrino, Z. Li, M. Stoll, and F. Becker, "Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data," International Journal of Remote Sensing, vol. 17, pp. 2089-2114, 1996. [DOI:10.1080/01431169608948760]
25. [25] F. Becker and Z. L. Li, "Surface temperature and emissivity at various scales: Definition, measurement and related problems," Remote Sensing Reviews, vol. 12, pp. 225-253, 1995. [DOI:10.1080/02757259509532286]
26. [26] J. C. Jiménez‐Muñoz and J. A. Sobrino, "A generalized single‐channel method for retrieving land surface temperature from remote sensing data," Journal of Geophysical Research: Atmospheres, vol. 108, 2003. [DOI:10.1029/2003JD003480]
27. [27] J. Cristóbal, J. Jiménez‐Muñoz, J. Sobrino, M. Ninyerola, and X. Pons, "Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature," Journal of Geophysical Research: Atmospheres, vol. 114, 2009. [DOI:10.1029/2008JD010616]
28. [28] J. C. Jiménez-Muñoz, J. Cristóbal, J. A. Sobrino, G. Sòria, M. Ninyerola, and X. Pons, "Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data," IEEE Transactions on Geoscience and Remote Sensing, vol. 47, pp. 339-349, 2009. [DOI:10.1109/TGRS.2008.2007125]
29. [29] A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, "A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images," IEEE transactions on geoscience and remote sensing, vol. 36, pp. 1113-1126, 1998. [DOI:10.1109/36.700995]
30. [30] B. Tardy, V. Rivalland, M. Huc, O. Hagolle, S. Marcq, and G. Boulet, "A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data," Remote Sensing, vol. 8, p. 696, 2016. [DOI:10.3390/rs8090696]
31. [31] J. C. Jiménez-Muñoz, J. A. Sobrino, D. Skoković, C. Mattar, and J. Cristóbal, "Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data," IEEE Geoscience and Remote Sensing Letters, vol. 11, pp. 1840-1843, 2014. [DOI:10.1109/LGRS.2014.2312032]
32. [32] S. M. Adler-Golden, P. K. Acharya, A. Berk, M. W. Matthew, and D. Gorodetzky, "Remote bathymetry of the littoral zone from AVIRIS, LASH, and QuickBird imagery," IEEE Transactions on Geoscience and Remote Sensing, vol. 43, pp. 337-347, 2005. [DOI:10.1109/TGRS.2004.841246]
33. [33] J. Francisco Tavora, J. Seifert-Granzin, J. Bañgate, and M. T. L. Estomata, "LANDSAT Step-by-step Processing Manual Feature Extraction Processing Using LANDSAT 7 ETM+," Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, 2013.
34. [34] usgs. (2018). Using the USGS Landsat 8 Product. Available: https://landsat.usgs.gov/using-usgs-landsat-8-product
35. [35] J. A. Sobrino, J. C. Jiménez-Muñoz, G. Sòria, M. Romaguera, L. Guanter, J. Moreno, et al., "Land surface emissivity retrieval from different VNIR and TIR sensors," IEEE Transactions on Geoscience and Remote Sensing, vol. 46, pp. 316-327, 2008. [DOI:10.1109/TGRS.2007.904834]
36. [36] Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, et al., "Land surface emissivity retrieval from satellite data," International Journal of Remote Sensing, vol. 34, pp. 3084-3127, 2013. [DOI:10.1080/01431161.2012.716540]
37. [37] T. N. Carlson and D. A. Ripley, "On the relation between NDVI, fractional vegetation cover, and leaf area index," Remote sensing of Environment, vol. 62, pp. 241-252, 1997. [DOI:10.1016/S0034-4257(97)00104-1]
38. [38] J. P. Walawender, M. J. Hajto, and P. Iwaniuk, "A new ArcGIS toolset for automated mapping of land surface temperature with the use of LANDSAT satellite data," in Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, 2012, pp. 4371-4374. [DOI:10.1109/IGARSS.2012.6350405]
39. [39] A. Kassa, "Drought risk monitoring for the Sudan using NDVI," M. Sc. thesis, University College, London.(CSA) Central Statistical Agency 2007 Population and Housing Census of Ethiopia, Addis Ababa: Central Statistical Agency, 1999.
40. [40] M. S. Latif, "Land Surface Temperature Retrival of Landsat-8 Data Using Split Window Algorithm-A Case Study of Ranchi District," Int J Eng Dev Res (IJEDR), vol. 2, pp. 3840-3849, 2014.
41. [41] nasa. (2018, 28 January). calculate atmospheric parameters Available: http://atmcorr.gsfc.nasa.gov/
42. [42] A. S. Fotheringham, C. Brunsdon, and M. Charlton, Geographically Weighted Regression: The Analysis of Spatially Varying Relationships: Wiley, 2003.
43. [43] W. R. Tobler, "A computer movie simulating urban growth in the Detroit region," Economic geography, vol. 46, pp. 234-240, 1970. [DOI:10.2307/143141]
44. [44] D. P. McMillen and J. F. McDonald, "Locally weighted maximum likelihood estimation: Monte Carlo evidence and an application," in Advances in spatial econometrics, ed: Springer, 2004, pp. 225-239. [DOI:10.1007/978-3-662-05617-2_10]
45. [45] M. Charlton, S. Fotheringham, and C. Brunsdon, "Geographically weighted regression," White paper. National Centre for Geocomputation. National University of Ireland Maynooth, 2009.
46. [46] P. Dale, Mathematical Techniques in GIS: CRC Press, 2014. [DOI:10.1201/b16910]
47. [47] M. Hasanlou and F. Samadzadegan, "ICA/PCA base genetically band selection for classification of Hyperspectral images," in 31st Asian Conference on Remote Sensing, 2011.
48. [48] R. F. G. Robert L. Mason, James L. Hess, Statistical Design and Analysis of Experiments: With Applications to Engineering and Science, 2, illustrated ed. vol. 474: John Wiley & Sons, 2003, 2003.
ارسال پیام به نویسنده مسئول



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimi A, Pahlavani P, Bigdeli B. Determining Effective Factors on Land Surface Temperature of Tehran Using LANDSAT Images And Integrating Geographically Weighted Regression With Genetic Algorithm. jgit 2019; 7 (3) :79-102
URL: http://jgit.kntu.ac.ir/article-1-743-fa.html

کریمی عامر، پهلوانی پرهام، بیگدلی بهناز. تعیین عوامل موثر بر دمای سطح زمین شهر تهران با استفاده از تصاویر لندست و ترکیب رگرسیون وزن‌دار جغرافیایی و الگوریتم ژنتیک. مهندسی فناوری اطلاعات مکانی. 1398; 7 (3) :79-102

URL: http://jgit.kntu.ac.ir/article-1-743-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 7، شماره 3 - ( 9-1398 ) برگشت به فهرست نسخه ها
نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی Engineering Journal of Geospatial Information Technology
Persian site map - English site map - Created in 0.05 seconds with 38 queries by YEKTAWEB 4660